Patent: **PBRC** <a href="https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2016092583">https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2016092583</a> (algae to food/feed/biofuel, in urban and periurban); <a href="mailto:view1">view1</a>

## **PBRC**

Sistema di coltivazione <u>alghe</u> per impiego alimentare, farmaceutico ed energetico (biogasolio)

PBRC™ - Photo Bio Reactor Continuous (algae to feed/food and biodiesel from waste water / wet urban and organic in general).

# Il Sistema **PBRC** è alimentato in forma autonoma oppure abbinato al sistema **MBGC**

## Vantaggi

- Forte abbattimento dei costi relativi all'acquisto di prodotti organici destinati agli impieghi più svariati, permettendo la produzione autonoma di:
  - Alimenti da trasformare in cibo
  - In materie prime per industrie farmaceutiche, cosmetiche, alimentaristiche per zootecnia
  - Materie prime per biocarburanti

PBRC è un sistema integrato e compatto, per la coltivazione di microalghe (organismi unicellulari), in combinazione con digestori anaerobici di congrua dimensione, è rivolto a piccole aziende manifatturiere dei comparti agro-alimentari, nonché di insediamenti urbani e periurbani. Si caratterizza attraverso un innovativo sistema idraulico, mirando ad una produzione congiunta di prodotti oleici e proteici, da destinare a scopi energetici e di alimentazione umana e animale (feed-food chain), oltre che di comparti industriali chimico farmaceutici. PBRC è costituito da un contenitore coibentato e stagno (in c.a.v., standard di mercato), di norma parallelepipedo, compartimentato in 2 macrovolumi, che processano in serie la fase di coltivazione ed accrescimento e quella di raccolta (frantumazione e separazione). Nel primo volume, dotato di parziali setti alternati, con ruoli di diffusori omogenei di congruo spettro radiativo, si procede alla crescita esponenziale lungo lo sviluppo longitudinale, in cui si attua un programma di alimentazione mediante aggiunte di CO2 e sali NPK (derivanti da processi di bonifica o artificiali), correlato alla densità di popolazione microalgale. Nel secondo volume, dopo avere cambiato direzione al piano di scorrimento e contemporaneamente al processo di rottura selettiva degli organismi unicellulari (con date caratteristiche), si procede alla separazione gravimetrica, predisponendosi al prelievo mediante estrazione di miscele a congrue concentrazioni (oleiche e proteiche), riciclando nel primo volume la parte centrale, preposta alla rigenerazione. Il fattore di estrazione viene correlato ai cicli di crescita e lunghezza adottata nel primo volume. PBRC consente di ottenere un processo di alimentazione continuo e differenziato per posizione, mediante processo automatico regolato da PLC, integrato da opportuna sensoristica ed eventualmente controllato a distanza. PBRC offre un sensibile contributo ai temi oggetto di "Direttiva Nitrati" (91/676/CEE recepita con D.Lgs. 152/99 e D.M. 7 aprile 2006) e "Carbon Capture and Storage" (2009/31/EC), trasformando i loro soggetti da "problemi in risorse", contribuendo sia i nitrati che la CO2 all'accrescimento algale.



### Piano Commerciale di Ripresa e Resilienza

PCRR JWTeam Srls - Sede Legale: Via Terrazzano 85 – 20017 Rho (MI) - C.F. e P.I. 12092970966, Cap.Soc. € 200, Pec: pcrrjwt@pec.it Luogo Milano; Data ....; Foro di riferimento: Milano (Italia); per quanto non espressamente indicato, si fa riferimento alla giurisprudenza in auge sulla proprietà intellettuale e secondo trattati vigenti tra i paesi delle parti (in Convenzione di Parigi).

### CONTRATTO PER LICENZA DI KNOW-HOW E BREVETTO PERTINENTE. PBRC 1T0001427412

Tra: **PCRR JWTeam Srls** (P.iva 12092970966), rappresentata da Lavanga Vito, con sede in Rho (MI), Italia, denominato "Concessionario" (da una parte) e la Ditta ... (Vat code ...), rappresentata da ...., con sede in Città, Stato, denominata "Licenziataria" (dall'altra), altresì premesso che il Concessionario è in possesso di informazioni tecniche, commerciali e know-how applicativo pertinente il brevetto **IT0001427412**, che interessano la Licenziataria, si conviene e stipula quanto di seguito.

- Art. 1 Il Concessionario autorizza la Licenziataria a produrre, vendere, usare i beni prodotti con il know-how fornito ed il brevetto, sia in forma scritta che verbale, di persona o in forma telematica.
- Art. 2 La licenza, non esclusiva, non può essere ceduta a terzi, salvo previo consenso del Concessionario. Alla prima Licenziataria si riconosce il diritto di prelazione su ogni eventuale successiva licenza nello stesso territorio (previo ulteriori accordi, convertibile in **ESCLUSIVA** per fini di bilancio patrimoniale, B I.3 cc art.2424, con anticipo doppio e garantito ogni anno oppure **UNICA**, con anticipo minimo garantito ogni anno).
- Art. 3 La presente licenza (produzione, distribuzione ed uso) è accordata per i seguente territorio: comprensorio di circa 1.000.000 abitanti (un milioni di abitanti, delimitato da congruo elenco provincie/comuni), a far centro la città ...(Stato), nei confini dello stato di appartenenza della città.
- Art. 4 Il Concessionario si impegna a fornire alla Licenziataria, assistenza e tutte le informazioni circa il materiale d'uso, la sperimentazione dello stesso, i metodi di impiego utilizzati, ivi compresi quanto da mantenere segreto, in modo che un tecnico di normale qualificazione professionale possa realizzare i beni o servizi, dopo un ragionevole periodo di apprendimento e di sperimentazione. Il Concessionario fornirà alla Licenziataria, entro il termine di 3 mesi dalla firma del presente contratto, l'assistenza e tutte le informazioni, progetti e i disegni utili che consentano la realizzazione del prodotto. Beni e servizi della Licenziataria, potranno fregiarsi di marchio distintivo del Concessionario (se autorizzato, con licenza dedicata), a garanzia di conformità e liceità dei beni stessi. A detti materiali sarà unito un dossier, datato da PEC e segreto, completo di questo accordo con i dati sensibili.
- Art. 5 Il Concessionario dichiara di non essere a conoscenza dell'esistenza di validi brevetti appartenenti a terzi e posti a tutela del procedimento industriale oggetto del presente contratto, senza tuttavia garantire che un tale brevetto non possa rivelarsi in seguito esistente.
- Art. 6 La Licenziataria verserà al Concessionario il 8% del fatturato conseguente (diretto o indiretto) o di beni equivalenti nel mercato agito; si conviene una rendicontazione semestrale e diritto alla trasparenza sulla contabilità pertinente. La Licenziataria si obbliga a versare l'importo di 100.000€ (centomila/00 euro), il 20% alla firma del presente accordo, il saldo entro 30 giorni, a titolo di anticipo ed impegno nello sviluppo della licenza. Ulteriori markup potranno essere concordati in futuro, per iscritto, a fronte di specifici servizi aggiuntivi.
- Art. 7 La Licenziataria, per se e coloro che introduce al segreto, si obbliga a considerare come strettamente riservati tutti i documenti e le informazioni comunicati (know-how), anche dopo la conclusione del presente contratto. Al riguardo, essa adotterà tutte le più opportune precauzioni al fine di salvaguardare il segreto e know-how complessivo.
- Art. 8 Le Parti si impegnano a non partecipare, direttamente o per interposta persona, in alcuna società che possa utilizzare indebitamente, nello stesso territorio accordato, la documentazione e le informazioni tecniche oggetto del presente contratto. Le Parti si presteranno reciproca collaborazione per impedire, in ogni miglior modo, che terzi possano copiare servilmente il prodotto. In particolare, esse si presteranno reciproca assistenza nell'azione diretta a perseguire gli imitatori o contraffattori, nei modi e nelle forme consentite dalle leggi e dagli ordinamenti vigenti nei Paesi dove esistono o agiscono terzi da perseguire.
- Art. 9 Il presente contratto avrà la durata di 20 anni. Al termine della validità del presente contratto, la Licenziataria si asterrà dal divulgare la documentazione tecnica in suo possesso.

### Concessionario Firma: Licenziataria Firma:

Restituire, completa in ogni sua parte, mediante PEC, a: pcrrjwt@pec.it

### (12) International Application Status Report

Received at International Bureau: 01 February 2016 (01.02.2016)

**Information valid as of:** 17 June 2016 (17.06.2016) **Report generated on:** 04 July 2020 (04.07.2020)

(10) Publication number: (43) Publication date: (26) Publication language:

WO2016/092583 16 June 2016 (16.06.2016) English (EN)

(21) Application Number: (22) Filing Date: (25) Filing language:

PCT/IT2015/000307 14 December 2015 (14.12.2015) Italian (IT)

(31) Priority number(s): (31) Priority date(s): (31) Priority status:

MI2014A002124 (IT) 12 December 2014 (12.12.2014) Priority document received (in compliance

with PCT Rule 17.1)

### (51) International Patent Classification:

**C12M 1/00** (2006.01)

### (71) Applicant(s):

LAVANGA, Vito [IT/IT]; Via Terrazzano 85 20017 Rho (Ml) (IT) (for all designated states)

### **(72) Inventor(s):**

LAVANGA, Vito; Via Terrazzano 85 20017 Rho (Ml) (IT) FARNE', Stefano; Via Trasimeno 40/14 20128 Milano (MI) (IT)

(54) Title (EN): METHOD FOR GROWING MICROALGAE, AND DEVICE FOR IMPLEMENTING SAID METHOD

(54) Title (FR): PROCÉDÉ DE CULTURE DE MICROALGUES ET DISPOSITIF DE MISE EN OEUVRE DE CE PROCÉDÉ

### (57) Abstract:

**(EN):** This invention relates to a method and to a device to implement said method, to cultivate microalgae and to obtain the simultaneous separation of oleic and protein parts, reducing the required space and drawing mainly from renewable energy sources.

(FR): La présente invention concerne un procédé, et un dispositif permettant de mettre en oeuvre ledit procédé, de culture de microalgues et d'obtention de la séparation simultanée des parties oléiques et protéiques, réduisant l'espace nécessaire et utilisant principalement des sources d'énergie renouvelable. Le procédé est caractérisé par le fait qu'il comprend les phases suivantes : • ledit mélange aqueux, contenant ledit inoculum, suit un trajet (B) d'un point d'entrée (C) à un point de sortie (D), le long duquel il est irradié par un spectre de rayonnement approprié au développement et à la croissance desdites microalgues; • le long dudit trajet (B) des sels NPK (contenant de l'azote, du phosphore et du potassium) et du CO2 y sont ajoutés, ces ajouts, conjointement à la diffusion dudit spectre de rayonnement, provoquant une croissance intense desdites algues ; • ledit mélange, fortement enrichi de micro-algues, est inondé d'ultrasons qui détruisent les algues adultes, les séparant en composants oléiques et protéiques, ladite action provoquant la formation d'un nouveau mélange aqueux dans lequel une fraction oléique et une fraction protéique sont présentes ; • ledit nouveau mélange aqueux est soumis à une séparation gravimétrique spontanée de telle sorte que : • une fraction oléique, plus légère, migre dans la partie supérieure dudit nouveau mélange ; • une fraction protéique, plus lourde, migre dans la partie inférieure dudit nouveau mélange; • une fraction neutre composée presque exclusivement d'eau reste dans la partie intermédiaire dudit nouveau mélange ; · lesdites trois fractions sont prises individuellement. Le dispositif (A) est caractérisé par le fait qu'il comprend : • un bassin (1) adapté pour contenir ledit mélange aqueux ; • un ou plusieurs déflecteurs (3, 4, 5) montés de façon à délimiter un trajet (B) d'un point (C) à point (D), ledit ou lesdits déflecteurs (3, 4, 5) étant des panneaux diffuseurs du spectre de rayonnement homogènes, appropriés à la phase de culture ; • un moyen adapté pour fournir, audit mélange fluide, des sels NPK (sels d'azote, de phosphore et de potassium) et du CO2, ledit moyen étant disposé le long dudit trajet (B); • un moyen (9) adapté pour produire des ultrasons, positionné au niveau du point final (D) dudit trajet (B), lesdits ultrasons étant d'une puissance suffisante pour détruire les algues adultes en les séparant en composants oléiques et protéiques, donnant lieu à un nouveau mélange fluide dans lequel sont présentes une phase oléique, une phase protéique et une phase neutre ; • un moyen adapté pour diffuser ledit nouveau mélange fluide, afin de mettre en œuvre une séparation gravimétrique desdites phases oléique, protéique et neutre ; • un moyen adapté pour collecter séparément lesdites phases oléique, protéique et neutre.

### **International search report:**

Received at International Bureau: 30 May 2016 (30.05.2016) [EP]

### International Report on Patentability (IPRP) Chapter II of the PCT:

Not available

### (81) Designated States:

AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, VC, VN, ZA, ZM, ZW

European Patent Office (EPO): AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR

African Intellectual Property Organization (OAPI): BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG African Regional Intellectual Property Organization (ARIPO): BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW

Eurasian Patent Organization (EAPO): AM, AZ, BY, KG, KZ, RU, TJ, TM

#### **Declarations:**

Declaration made as applicant's entitlement, as at the international filing date, to apply for and be granted a patent (Rules 4.17(ii) and 51bis.1(a)(ii)), in a case where the declaration under Rule 4.17(iv) is not appropriate

Declaration of inventorship (Rules 4.17(iv) and 51bis.1(a)(iv)) for the purposes of the designation of the United States of America



### ATTESTATO DI BREVETTO PER INVENZIONE INDUSTRIALE

### N. 0001427412

Il presente brevetto viene concesso per l'invenzione della domanda sotto specificata:

| num. domanda | anno | C.C.I.A.A. | data pres. domanda | classifica |
|--------------|------|------------|--------------------|------------|
| 002124       | 2014 | MILANO     | 12/12/2014         | C12M1 00   |

TITOLARE/I

LAVANGA VITO

RHO (MI)

DOM. ELETT.

LAVANGA VITO

INDIRIZZO

VIA TERRAZZANO, 85

20017 RHO (MI)

TITOLO

IMPIANTO INTEGRATO E COMPATTO PER LA COLTIVAZIONE DI

MICROALGHE.

INVENTORE/I

LAVANGA VITO

FARNE' STEFANO



Roma, 27/02/2017

COMMERCIO MILANO

18 AGO. 2017

LUfficiale Rogante M. CORTONESI

COPIA CONFORME ALL'ORIGINALE
FIRMATA DIGITALMENTE DAL
DIRIGENTE DELL'UIBM

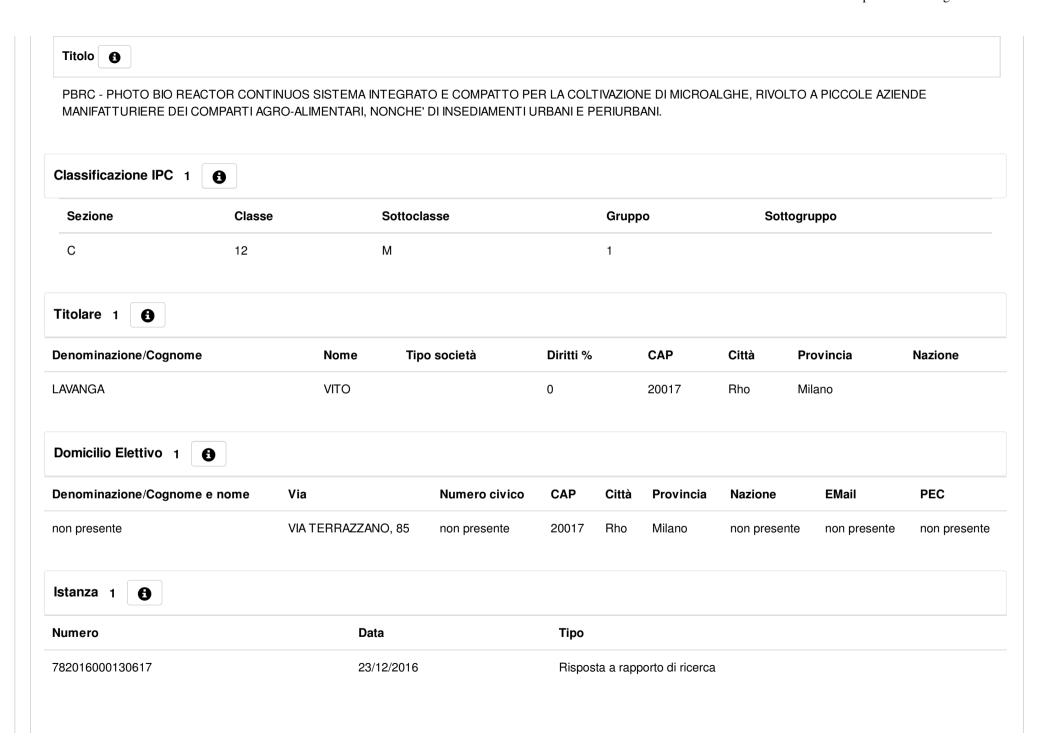
IL DIRIGENTE Dr.ssa Loredana Guglielmetti














il risultato della ricerca delle domande è limitato alle **1000** occorrenze più recenti.

ricerca per **combinazione di criteri** Risultati ricerca (13 occorrenze) 102014902316173 Stampa Visura Informazioni identificative della domanda di brevetto per invenzione industriale numero 102014902316173 presentata il 12/12/2014 (MI2014A002124) Data deposito Tipo domanda Stato finale **Data concessione** Tipo deposito 6 Numero concessione 0 0 0 0 0 12/12/2014 27/02/2017 0001427412 deposito presso la camera di titolata commercio

1 di 3 26/01/2019 18.30



26/01/2019 18.30

MINISTERO DELLO SVILUPPO ECONOMICO (http://www.mise.gov.it)

Direzione generale per la lotta alla contraffazione - UIBM (http://www.uibm.gov.it)

Via Molise 19

0187 Roma

3 di 3 26/01/2019 18.30

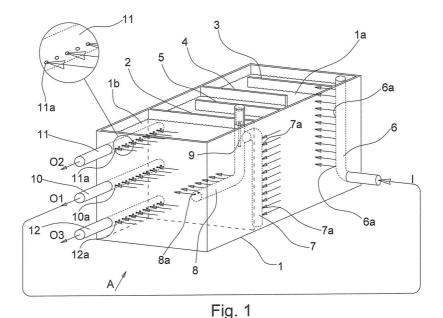
Feedback Search ▼

Browse ▼

Tools ▼

Settings

## 1. W02016092583 - METHOD FOR GROWING MICROALGAE, AND DEVICE FOR IMPLEMENTING SAID METHOD

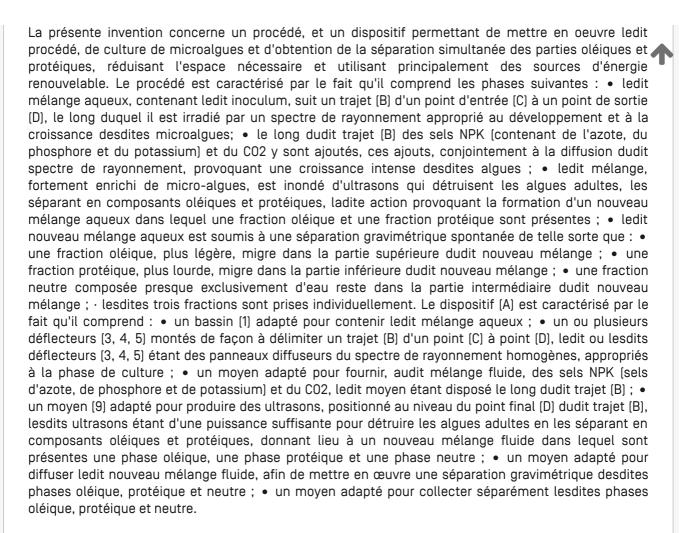

PCT Biblio. Data Description Claims Drawings ISR/WOSA/A17[2][a] National Phase

Notices Documents

PermaLink Machine translation ▼

### Title

**(EN)** METHOD FOR GROWING MICROALGAE, AND DEVICE FOR IMPLEMENTING SAID METHOD **(FR)** PROCÉDÉ DE CULTURE DE MICROALGUES ET DISPOSITIF DE MISE EN OEUVRE DE CE PROCÉDÉ




### **Abstract**

### (EN)

This invention relates to a method and to a device to implement said method, to cultivate microalgae and to obtain the simultaneous separation of oleic and protein parts, reducing the required space and drawing mainly from renewable energy sources.

(FR)



### Also published as

EP2015841054

#### **Publication Number**

W0/2016/092583

### **Publication Date**

16.06.2016

### International Application No.

PCT/IT2015/000307

#### International Filing Date

14.12.2015

#### **IPC**

C12M 1/00 2006.01

### **CPC**

| C12M 21/02 | C12M 23/34 | C12M 27/20 | C12M 47/06 | C12M 47/08 |
|------------|------------|------------|------------|------------|
|            |            |            |            |            |

#### **Applicants**

LAVANGA, Vito [IT]/[IT]

### **Inventors**

LAVANGA, Vito

FARNE', Stefano

**Priority Data** 

MI2014A002124 12.12.2014 IT

**Publication Language** 

English (EN)

Filing Language

Italian (IT)

**Designated States** 

View all

Latest bibliographic data on file with the International Bureau

## UNIVERSITA' DEGLI STUDI DI PAVIA FACOLTA' DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCANICA (in collaborazione con il Politecnico di Milano)

## DIMENSIONAMENTO ED ANALISI DI UN FOTOBIOREATTORE PER LA PRODUZIONE E LA SEPARAZIONE DI MICROALGHE

**Docente Tutore:** 

Prof. Stefano Farnè

**Laureando:** 

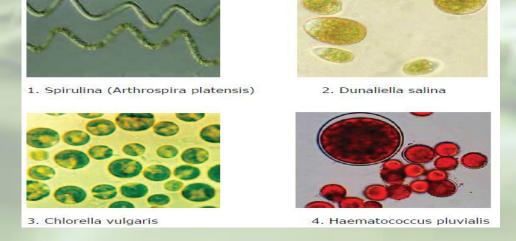
Gerardo E. De Lucia

## Le Microalghe

La raccolta e l'utilizzo di microalghe è una pratica molto antica, addirittura risalente alle civiltà precolombiane.

Gli Aztechi, più di 5000 anni fa, coltivavano *Spirulina platensis* (Arthrospira) nel lago Texcoco, in Messico.

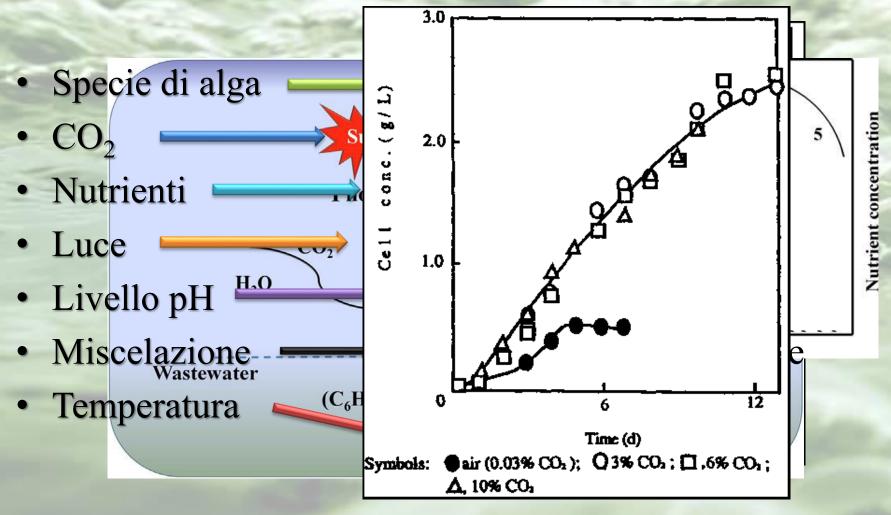
Presso la popolazione Kanembu del Ciad e della Nigeria viene raccolta ancora oggi nel lago Kossorom; filtrata ed essiccata, viene variamente utilizzata in forme culinarie tra cui la souce, una sorta di brodo vegetale molto nutriente.




## Le Microalghe

- Le microalghe sono microrganismi unicellulari, fotoautotrofi, presenti in tutti gli ecosistemi della terra, in grado di adattarsi a diverse condizioni ambientali
- Grazie alla loro semplice struttura possono crescere molto rapidamente

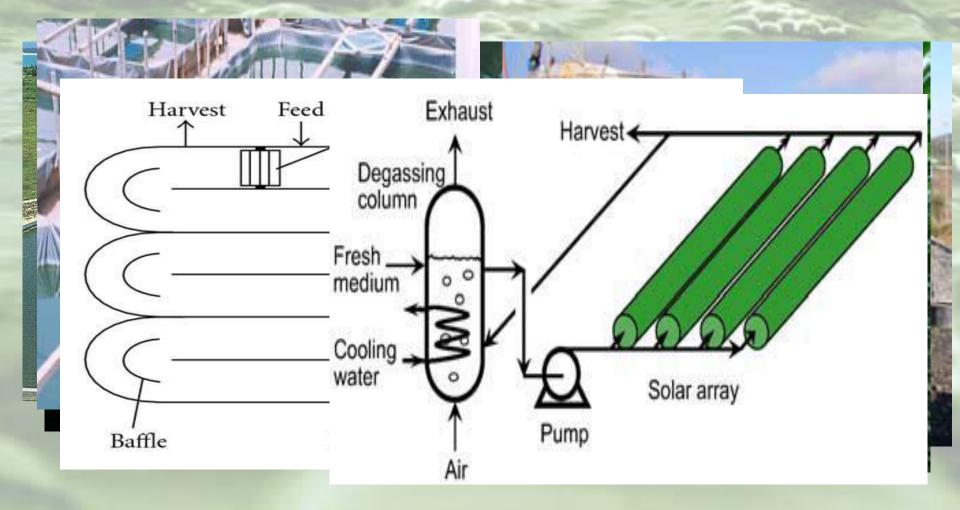
• Si stima che esistono più di 50 000 specie di microalghe, ma solo un numero limitato (circa 30 000) sono state studiate e


analizzate



|         | Specie microalga                                                   | le Controllo  | dell'inquinamento                                                  |         |     |
|---------|--------------------------------------------------------------------|---------------|--------------------------------------------------------------------|---------|-----|
| Pr      | Anabaena, Oscilatoria,<br>Spirulina, S. platensis                  | $NO_3^-, N$   | O <sub>2</sub> -, NH <sub>4</sub> +, PO <sub>4</sub> <sup>3-</sup> | oni     |     |
|         | Anabaena sp.                                                       | 2,4,6-        | trinitrotoluene                                                    | UIII    |     |
|         | Ankistrodesmus sp,<br>Scenedesmus sp, Microa<br>sp, Pediastrum sp. | ctinium       | CO2                                                                |         | i i |
|         | Chlamy domonas reinha                                              | rdtii Hg (II) | , Cd(II), Pb(II)                                                   |         |     |
|         | Chlorella sp.                                                      |               | Boro                                                               | -       |     |
| mhii    | Chlorella miniata                                                  |               | TBT                                                                | -30     |     |
| egetale | Contenuto                                                          | Rendimento in | Suolo Utilizz                                                      | ato Pro | dı  |

|   |                    | Chlorella       | sp.        |                              | Doro |               | The second second |   |
|---|--------------------|-----------------|------------|------------------------------|------|---------------|-------------------|---|
|   | • Rincom           | his Chlorella   | miniata    |                              | TBT  |               | - Balling         |   |
| - | Fonte vege         | etale Cont      | enuto      | Rendimento in                | Suo  | lo Utilizzato | Produttività di   |   |
|   |                    |                 | dia        | مانم                         | (n   | n² anno/kg    | biodiesel         |   |
|   | Specie Microalga   | le Tasso d      | i fissazio | ne di CO <sub>2</sub> (g/m³, | /h)  | iodiesel)     | (kg biodiesel/ha  |   |
|   |                    | o efficie       | enza di ri | mozione (%)                  |      | ,             | anno)             | e |
|   | Chlorogleopsis sp  | ).              | 0.         | 8 - 1.9                      |      | 66            | 152               |   |
|   | Chlorella sp.      |                 | 16         | 5 - 58%                      |      | 31            | 321               | _ |
|   | Chlorella sp. NCT  | U-2             |            | 63%                          |      | 18            | 562               |   |
|   | Chlorella sp.      |                 | 10         | - 50%                        |      | 15            | 656               |   |
|   | Chlorella vulgaris |                 | 12         | 8 - 141                      |      | 12            | 809               |   |
|   | Chlorella vulgaris |                 | 80         | ) - 260                      |      | 12            | 862               |   |
|   |                    |                 |            |                              |      | 11            | 946               |   |
|   | Chlorella vulgaris |                 |            | 148                          |      | 9             | 1 156             |   |
|   | Euglena gracilis   |                 |            | 3.1                          |      | 2             | 4 747             |   |
|   | Porphyridium sp.   |                 | 3          | 3 - 18                       |      | 0.2           | 51 927            |   |
|   | S. platensis       |                 | 38         | .3 - 60                      |      | 0.1           | 86 515            |   |
|   | Microalg           | ga <sup>c</sup> | 70         | 136 900                      |      | 0.1           | 121 104           |   |


### Metabolismo e Crescita



## Produzione su larga scala

Sistemi aperti (OPEN PONDS)

Sistemi chiusi (FOTOBIOREATTORI)



## Confronto tra sistemi aperti e sistemi chiusi

### **OPEN PONDS**

### Vantaggi:

- Bassi costi
- Bassa concentrazione di O<sub>2</sub>

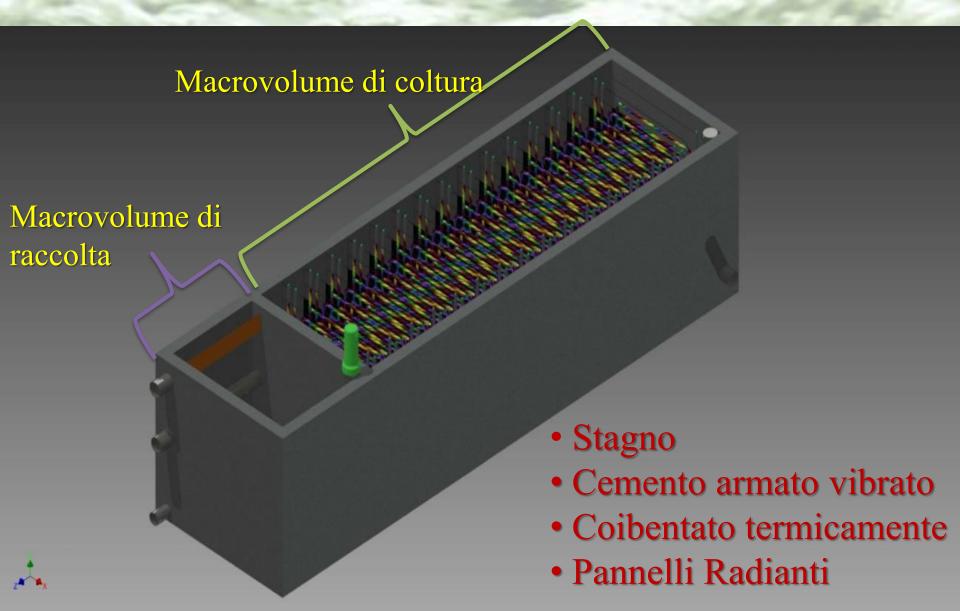
### Svantaggi:

- Alta perdita di H<sub>2</sub>0 e di CO<sub>2</sub>
- Bassa efficienza fotosintetica
- Alto rischio contaminazione
- Bassa concentrazione biomassa
- Dipendenza condizioni atmosferiche
- Elevato spazio occupato

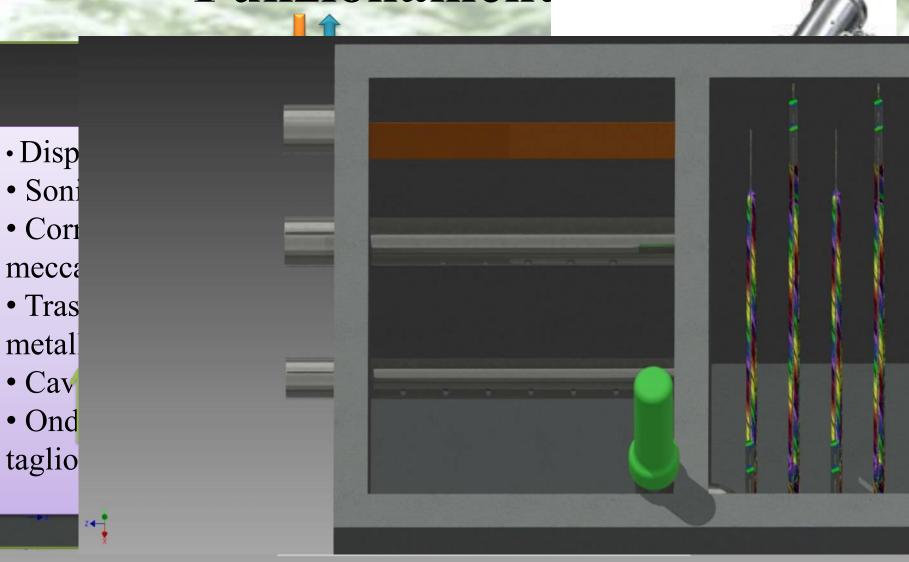
### **FOTOBIOREATTORI**

### Vantaggi:

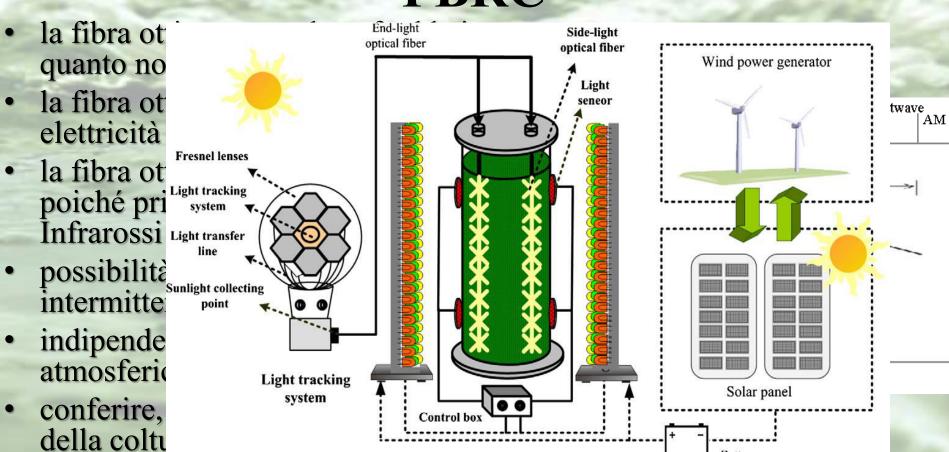
- Alta efficienza fotosintetica
- Alta concentrazione biomassa
- Bassa perdita di H<sub>2</sub>0 e di CO<sub>2</sub>
- Minore spazio richiesto
- Basso rischio contaminazione


### Svantaggi:

- Alta concentrazione di O<sub>2</sub>
- Alta temperatura
- Costi molto elevati


## Il fotobioreattore oggetto della relazione

PhotoBioReactor Continuous


## **Photobioreactor Continuous**



## Funzionamenta DDDC



## Vantaggi dell'illuminazione nel PBRC



**Electricity production** 

Battery

• è possibile integrare nel sistema di illuminazione processi FER

luminosa ottimaie

## Confronto con lo stato dell'arte

| Commonto con lo stato dell'arte |                                                      |                 |       |  |  |
|---------------------------------|------------------------------------------------------|-----------------|-------|--|--|
| ARIABILI OPERATIVE              | OPEN PONDS                                           | FOTOBIOREATTORE | PBRC  |  |  |
| Spazio occupato                 | Alto                                                 | Basso           | Basso |  |  |
| Perdita di H <sub>2</sub> 0     | Molto alta Può determinare la precipitazione di sali | Bassa           | Bassa |  |  |
|                                 | Alta                                                 |                 |       |  |  |

Bassa

Medio

Alta

L'ossigeno deve essere rimosso

causa inibizione della reazione di

fotosiidazione

Alta

Alta

Spesso è richiesto un sistema

accessorio di raffreddamento

Alto

Avviene mediante l'immissione di

gas (miscela aria e CO<sub>2</sub>)

Richiesta

Bassa

Medio

Bassa

Molto Alta

Spettro radiativo mirato

Controllata

Con pannelli radianti a pavimento

Basso

Servono minori miscelazioni

poiché non ci sono zone d'ombra

Richiesta

Più facile da effettuare rispetto ai

fotobioreattori

Dipende dalla profondità delle

vasche Medio

Generalmente bassa

Il gas è rilasciato liberamente dalla

superficie delle vasche

**Bassa** 

Molto variabile

E' in funzione della profondità delle

vasche

Basso

Si utilizzano pale rotanti

Non richiesta

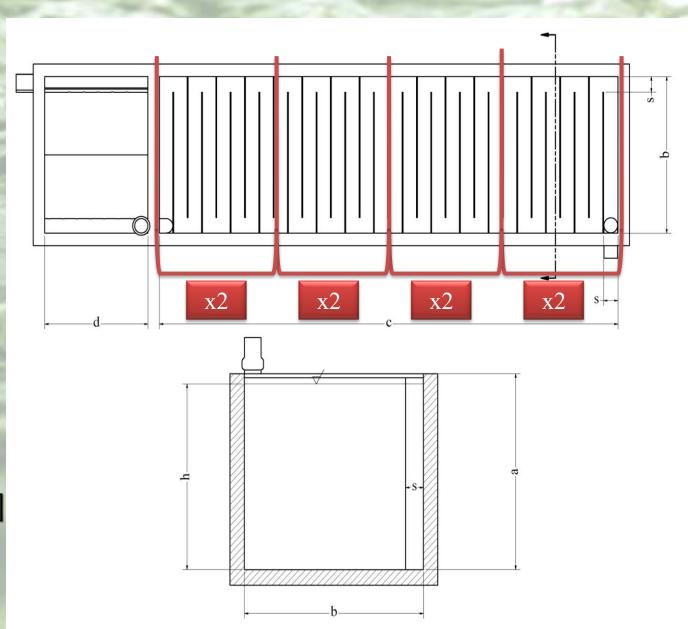
Perdita di CO<sub>2</sub>

Consumo di CO<sub>2</sub>

Concentrazione dell'O2

Efficienza fotosintetica

**Temperatura** 


Rimescolamento alghe

Pulizia degli impianti

| VARIABILI OPERATIVE                           | OPEN PONDS                                                                                       | FOTOBIOREATTORE                                           | PBRC                                                                                                   |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Rischio di contaminazione                     | Elevato Dipende dalle caratteristiche chimico-fisiche del mezzo di coltura                       | Basso                                                     | Basso                                                                                                  |
| Qualità della biomassa algale                 | Variabile                                                                                        | Riproducibile                                             | Riproducibile                                                                                          |
| Concentrazione media della<br>biomassa algale | <b>Bassa</b> 0.15 - 0.5 [g/1]                                                                    | <b>Alta</b><br>5 - 8 [g/l]                                | <b>Molto Alta</b><br>Si punta ai 20 [g/l]                                                              |
| Flessibilità di produzione                    | Bassa Solo un numero limitato di specie, difficoltà nel modificare le condizioni chimico-fisiche | Alta Possibilità di variare le condizioni chimico-fisiche | Alta Possibilità di variare le condizioni chimico-fisiche e i cicli di riproduzione                    |
| Dipendenza dalle condizioni<br>atmosferiche   | Alta                                                                                             | Media                                                     | Bassa Luce artificiale e temperatura controllata Possibilità di sfruttare luce naturale indirettamente |
| Tempo di avvio                                | 6-8 settimane                                                                                    | 1-4 settimane                                             | < 1 settimana                                                                                          |
| Produttività                                  | Media Dipende dalle condizioni ambientali e dalle caratteristiche tecniche dell'impianto         | Alta                                                      | Alta                                                                                                   |
| Costi di raccolta                             | Alti<br>Dipendono dalla specie                                                                   | Bassi Sono dovuti all'elevata concentrazione              | Molto Bassi Elevata concentrazione Separazione e raccolta in coda alla fase di crescita                |

### Analisi di redditività

- a = 2.5 [m]
- b = 2.5 [m]
- c = 8 [m]
- d = 2 [m]
- h = 2.4 [m]
- s = 0.25 [m]
- z = c/s = 32
- L = 80 [m]
- $A = s h = 0.6 [m^2]$



### Analisi di redditività

$$Q = 2 [m^3/h] \longrightarrow v = 3.333 [m/h] \longrightarrow t = 24 [h]$$

Chlorella vulgaris BEIJ

Un raddoppio ogni 6 [h]

$$\mu = \frac{\ln \frac{N_f}{N_i}}{t_f - t_i} = \frac{\ln 2}{6} = 0.1155 [h^{-1}]$$

$$\rho_i = 1.34 [g/1] \longrightarrow \rho_f = 21.34 [g/1]$$

$$\dot{m}_{produzione} = \dot{m}_{proteico} + \dot{m}_{oleico} = \dot{m}_{tot} - \dot{m}_{ricircolo} = Q(\rho_f - \rho_i)$$
 [kg/h]

40 [kg/h] = 960 [kg/giorno]

## Analisi di redditività

100000

0.117

0.035

0.14

0.250

7828

100000

1.535

0.048

4.00

0.384

5681

PBRC\*

192000

8.42

21.04

21.34

0.395

25

| 200       |        | Con and          |                     |  |
|-----------|--------|------------------|---------------------|--|
| VARIABILE | UNITA' | RACEWAY<br>PONDS | FOTOBIO<br>REATTORI |  |
|           |        |                  |                     |  |

kg y<sup>-1</sup>

kg m<sup>-3</sup> d<sup>-1</sup>

kg m<sup>-2</sup> d<sup>-1</sup>

kg m<sup>-3</sup>

 $d^{-1}$ 

 $m^2$ 

**Produzione** 

annuale di

biomassa

**Produttività** 

volumetrica

**Produttività** 

areale

Concentrazione

Biomassa

Velocità di

diluizione

Area Necessaria

### Conclusioni

- Il PBRC unisce la semplicità strutturale delle open ponds e l'elevata produttività dei fotobioreattori
- Utilizzando una superficie poco estesa, è in grado sia di produrre un elevata quantità di biomassa, sia di separare la stessa in diverse componenti da destinare a mercati differenti
- I costi capitali stimati dell'impianto sono molto contenuti (circa 150 000 €), mentre quelli operativi potrebbero essere troppo elevati per giustificare una produzione concorrenziale con le altre tecnologie

### Conclusioni

- Sarà fondamentale l'integrazione dell'impianto con fonti energetiche rinnovabili
- Date le contenute dimensioni sarà possibile posizionarlo in prossimità di impianti di generazione elettrica, di trattamento acque reflue e/o di produzione di biogas
- In questa relazione si è fatta un'analisi generale e un dimensionamento di massima: prima che il PBRC possa essere effettivamente realizzato, saranno strettamente necessari approfondimenti teorici e prove sperimentali



### **INDICE**

| Int | troduzione                                                           |
|-----|----------------------------------------------------------------------|
| Ca  | apitolo 1                                                            |
| 1.  | Le microalghe                                                        |
|     | 1.1. Prodotti e Applicazioni                                         |
|     | 1.1.1. Biocombustibile da microalghe                                 |
|     | 1.1.2. Mitigazione delle emissioni di gas a effetto serra            |
|     | e di trattamento delle acque reflue                                  |
|     | 1.1.3. Prodotti nutraceutici e farmaceutici                          |
|     | 1.2. Metabolismo e crescita                                          |
|     | 1.2.1. Cinetica di crescita                                          |
|     | 1.2.2. La luce come variabile operativa                              |
|     | 1.2.3. La Temperatura                                                |
| Ca  | apitolo 2                                                            |
| 2.  | Sistemi per la produzione e la raccolta di microalghe su larga scala |
|     | 2.1. Open Ponds (Sistemi Aperti)                                     |
|     | 2.2. Fotobioreattori                                                 |
|     | 2.3. Differenze tra sistemi aperti e sistemi chiusi                  |
|     | 2.4. Funzionamento Batch rispetto al funzionamento continuo          |
|     | 2.5. Raccolta delle alghe                                            |

### Capitolo 3

| 3.  | PBRC (Photobioreactor Continuous)           | 30 |
|-----|---------------------------------------------|----|
|     | 3.1. Funzionamento di massima               | 31 |
|     | 3.2. Analisi di funzionamento del PBRC      | 31 |
|     | 3.2.1. La fase di coltivazione              | 31 |
|     | 3.2.2. La fase di separazione e di raccolta | 36 |
|     | 3.3. Modello matematico                     | 40 |
|     | 3.4. Innovatività e vantaggi del PBRC       | 43 |
|     | 3.5. Analisi di redditività                 | 46 |
|     |                                             |    |
| Co  | onclusioni                                  | 48 |
| Bil | bliografia                                  | 49 |
| Re  | endering immagine                           | 56 |

### INTRODUZIONE

La raccolta e l'utilizzo di microalghe è una pratica molto antica, addirittura risalente alle civiltà precolombiane.

Gli Aztechi, più di 5000 anni fa, coltivavano *Spirulina platensis (Arthrospira)* nel lago Texcoco, in Messico, e fu importata in Europa dal "conquistador" Cortez agli inizi del '500.

Presso la popolazione Kanembu del Ciad e della Nigeria viene raccolta ancora oggi nel lago Kossorom (Figura 0), filtrata ed essiccata, viene variamente utilizzata in forme culinarie tra cui la *souce*, una sorta di brodo vegetale molto nutriente.



Figura 0 - raccolta di Arthrospira sulle sponde del lago Kossorom (Ciad)

L'interesse verso il loro uso a scopo alimentare si manifestò intorno agli anni Cinquanta del secolo scorso, quando emerse la preoccupazione che l'aumento della popolazione mondiale potesse determinare una carenza alimentare e le microalghe sembravano poter rappresentare una fonte proteica a basso costo; questa pratica fu in seguito abbandonata, visti i deludenti risultati ottenuti dalle prime colture commerciali.

Recentemente, considerando che gli attuali sistemi energetici comportano pressioni sulle risorse ormai in via di esaurimento e un incremento delle emissioni di gas climalteranti (in particolare CO<sub>2</sub>), si è posta attenzione sull'utilizzo delle microalghe per la produzione di biocombustibili.

I biocarburanti di prima generazione (ricavati da frumento, orzo, mais, patate, canna da zucchero, barbabietola da zucchero, colza, soia, girasole, palme, noce di cocco e grassi

animali) e di seconda generazione (che utilizzano materiali lignocellulosici come paglia, legno ed erba) hanno mostrato tutti i loro limiti in termini economici ed ambientali, ovvero un'eccessiva estensione delle aree richieste, la riduzione

delle superfici agricole sfruttabili a fini alimentari e l'incremento del prezzo delle materie prime (acqua, fertilizzanti ecc.) necessarie anche alla produzione di beni di prima necessità.

Gli studi sui biocombustibili di terza generazione, che utilizzano le microalghe come fonte energetica, hanno portato alla luce altre proprietà e altre potenziali applicazioni della biomassa algale.

Ad oggi le microalghe vengono studiate per applicazioni in diversi settori commerciali quali: integratori alimentari, farmaci, cosmetici, mangimi, biocombustibili, trattamento delle acque reflue, mitigazione dei gas ad effetto serra.

Nonostante tutte queste possibili applicazioni, la produzione su larga scala per fini commerciali è ancora in fase di sviluppo.

Il principale motivo è il costo, ancora troppo elevato, per la produzione di biomassa algale.

Le due principali tecnologie attualmente esistenti per la produzione di microalghe su larga scala si dividono in sistemi aperti e sistemi chiusi (fotobioreattori).

Anche se la qualità della biomassa prodotta con i sistemi chiusi è ampiamente superiore, si continua a preferire quelli aperti per i costi nettamente inferiori di questa tecnologia.

In questa relazione si descrive il funzionamento di un fotobioreattore chiuso, non ancora esistente, che vuole mettersi in competizione con gli impianti all'attuale stato dell'arte.

Prima di far ciò, verranno descritte le microalghe e le relative applicazioni, al fine di giustificarne la produzione.

In seguito si analizzeranno le varie condizioni di crescita, in modo da apprezzare meglio le scelte effettuate per il dimensionamento del fotobioreattore.

Inoltre si descriveranno le attuali tecnologie esistenti per la produzione su larga scala, così da poterle mettere a confronto con l'impianto oggetto di questa relazione.

# **CAPITOLO 1**

# 1. Le Microalghe

Le microalghe sono microrganismi unicellulari, fotoautotrofi, presenti in tutti gli ecosistemi della terra, in grado di adattarsi a diverse condizioni ambientali.

A partire da CO<sub>2</sub> ed energia radiante del sole, producono zuccheri per il proprio metabolismo energetico e biosintetico, ed ossigeno che in parte usano con la respirazione ed in parte rilasciano nel mezzo esterno.

Grazie alla loro semplice struttura possono crescere molto rapidamente [Mata et al., 2010].



Figura 1 - Le microalghe usano energia luminosa (ad esempio il sole) per la produzione di energia chimica tramite la fotosintesi durante il naturale ciclo di crescita

Una descrizione dettagliata dei microrganismi è stata effettuata da Richmond (2004): si stima che esistono più di 50 000 specie di microalghe, ma solo un numero limitato (circa 30 000) sono state studiate e analizzate.

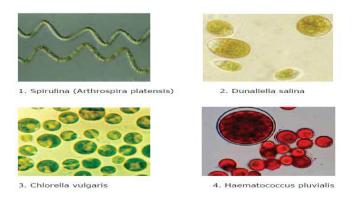



Figura 1.1 - Alcune comuni specie microalgali

#### 1.1 Prodotti e applicazioni

Ad oggi le microalghe sono usate per diversi scopi, che possono andare dalla produzione di biocombustibile a quella di cosmetici e di medicinali per l'essere umano. In base alla specie microalgale, alle diverse condizioni di crescita e in seguito ad opportuni processi di conversione della biomassa algale è possibile ricavare una vasta gamma di sostanze ad alto valore aggiunto, che trovano diverse collocazioni sul mercato:

- Biocarburanti: Idrocarburi a catena lunga e lipidi esterificati, utilizzabili come olio combustibile, biodiesel, benzine, idrogeno, biogas.
- Integratori dietetici: farina di alghe come ingrediente ed integratore nei prodotti per l'industria alimentare.
- Terapeutici diagnostici: produzione di acidi grassi poliinsaturi ad elevato valore fisiologico (es. EPA, DHA ecc.), integratori proteici e vitaminici, composti ad elevato valore nutrizionale, principi attivi ad azione anticancerogena e per la produzione di diagnostici avanzati (es. ficobiliproteine per la realizzazione di biosensori, ecc.).
- Pigmenti: b-carotene come colorante alimentare ed integratore dietetico (provitamina A). xantofille, ficobiline nei diagnostici, in cosmetica e come reagenti analitici.
- Fonti di Fine Chemical: Glicerolo usato negli alimenti, nei cibi, nelle bevande, in cosmetica, in farmaceutica. Acidi grassi, lipidi, cere, steroli, idrocarburi, amminoacidi, enzimi e vitamine naturali (C, E, provitamina A). Polisaccaridi come gomme in grado di aumentare la viscosità e gli scambi ionici.
- Mangimi: Produzione di ceppi microalgali per avannotteria e produzione di molluschi bivalvi, produzione di integratori e pigmenti (es. astaxantina, ecc.);
   Integratori ad uso mangimistico.

[http://www.ecotecgroup.com/it/centro-ricerche/microalghe/]

#### 1.1.1 Il Biocombustibile da microalghe

Gli attuali sistemi energetici comportano non solo pressioni sulle risorse ormai in via di esaurimento ma anche un incremento delle emissioni di gas climalteranti, in particolare CO<sub>2</sub>.

Si prevede che lo sviluppo di economie emergenti, come quella indiana e cinese, porterà ad una crescita del consumo mondiale di energia con il conseguente incremento degli impatti ambientali (aumento della concentrazione di CO<sub>2</sub> nell'atmosfera, acidificazione delle acque, perdita della biodiversità ecc.).

Gli strumenti per consentire il soddisfacimento della crescente domanda di energia e allo stesso tempo una mitigazione dei cambiamenti climatici sono: il risparmio energetico, il miglioramento dell'efficienza energetica, la cattura e l'immagazzinamento della CO<sub>2</sub> e l'impiego di fonti energetiche rinnovabili.

In particolare la promozione e lo sviluppo delle fonti energetiche rinnovabili consentono di migliorare la sicurezza degli approvvigionamenti e la stabilità economica, riducendo le emissioni di gas climalteranti.

Tra i diversi settori energetici, la produzione di carburanti presenta delle criticità a causa dell'elevata dipendenza dalle fonti fossili; sarebbe quindi opportuno realizzare almeno una parziale sostituzione dei combustibili fossili con i biocombustibili.

Dopo lo sviluppo di biocarburanti di prima e seconda generazione l'attenzione è ora rivolta verso le tecnologie di terza generazione che utilizzano le microalghe come materie prime.

Per quanto riguarda la resa in olio, le microalghe mostrano valori più elevati rispetto ad altre colture oleaginose (circa 59.000-137.000 L/ha, a seconda del contenuto lipidico) [Amicarelli et al., 2012]

| Microalga              | Contenuto lipidico (% s.s.) |
|------------------------|-----------------------------|
| Ankistrodesmus sp.     | 24-31                       |
| B. braunii             | 25-75                       |
| Botrycoccus braunii    | 25-75                       |
| Chaetoceros calcitrans | 16-40                       |
| Chaetoceros muelleri   | 33                          |
| Chlorella              | 18-57                       |
| Dunaliella sp.         | 17-67                       |
| Ellipsoidion           | 27                          |

| Isochrysis sp.            | 25-33 |
|---------------------------|-------|
| Monallanthus salina       | 22    |
| Nannochloris sp.          | 20-56 |
| Nannochloropsis sp.       | 12-68 |
| Neochloris oleabundans    | 29-65 |
| Nitzschia sp.             | 16-47 |
| Pavlova lutheri           | 35    |
| Pavlova salina            | 31    |
| Phaeodactylum tricornutum | 18-57 |
| Prymnesium parvum         | 22-38 |
| Scenedesmus dimorphus     | 16-40 |
| Scenedesmus obliquus      | 11-55 |
| Schizochytrium sp.        | 50-77 |
| Skeletonema               | 13-51 |
| Spirulina                 | 4-9   |
| Stichococcus              | 33    |

Tabella 1 - Contenuto lipidico di alcune specie microalgali [Maity et al., 2014]

Dalla Tabella 1.1 [Mata et al., 2010], che mette a confronto le efficienze di produzione e di uso del suolo per il biodiesel prodotto dalle microalghe e da altre colture oleaginose, risulta infatti evidente che le microalghe sono le più vantaggiose sia in termini di rendimento in olio che per l'elevata produttività in biodiesel (da 52.000 a 120.000 kg di biodiesel/ha) e allo stesso tempo richiedono una minore estensione di suolo (anche 49-132 volte minore di quella richiesta dalla coltivazione della colza e della soia).

| Fonte vegetale         | Contenuto lipidico<br>(% olio/ss) | Rendimento in olio<br>(L olio/ha anno) | Suolo Utilizzato<br>(m² anno/kg biodiesel) | Produttività di biodiesel<br>(kg biodiesel/ha anno) |
|------------------------|-----------------------------------|----------------------------------------|--------------------------------------------|-----------------------------------------------------|
| Mais                   | 44                                | 172                                    | 66                                         | 152                                                 |
| Canapa                 | 33                                | 363                                    | 31                                         | 321                                                 |
| Soia                   | 18                                | 636                                    | 18                                         | 562                                                 |
| Jatropha               | 28                                | 741                                    | 15                                         | 656                                                 |
| Camelina               | 42                                | 915                                    | 12                                         | 809                                                 |
| Colza                  | 41                                | 974                                    | 12                                         | 862                                                 |
| Girasole               | 40                                | 1070                                   | 11                                         | 946                                                 |
| Ricino                 | 48                                | 1307                                   | 9                                          | 1 156                                               |
| Palma                  | 36                                | 5366                                   | 2                                          | 4 747                                               |
| Microalgaa             | 30                                | 58 700                                 | 0.2                                        | 51 927                                              |
| Microalga <sup>b</sup> | 50                                | 97 800                                 | 0.1                                        | 86 515                                              |
| Microalgac             | 70                                | 136 900                                | 0.1                                        | 121 104                                             |

**Tabella 1.1** - Confronto tra le microalghe e altre materie prime per la produzione di biodiesel a = basso contenuto di olio ; b = medio contenuto di olio; c = alto contenuto di olio

La Tabella 1.2 [Maity et al., 2014] mostra, invece, come da diverse specie di microalghe è possibile produrre differenti tipi di biocombustibile.

| Microalga                 | Tipo di alga | Biocombustibile     | Produttività di biocombustibile   |
|---------------------------|--------------|---------------------|-----------------------------------|
| Arthrospira maxima        | Green        | Hydrogen, Biodiesel | 40 - 69%                          |
| Chlamydomonas reinhardtii | Green        | Hydrogen            | 2.5 mL h <sup>-1</sup> /11.73 g/L |
| Chlorella                 | Green        | Biodiesel           |                                   |
| Chlorella biomass         | Green        | Ethanol             | 22.6 g/L                          |
| Chlorella minutissima     | Green        | Methanol            |                                   |
| Chlorella protothecoides  | Green        | Biodiesel           | 15.5 g L <sup>-1</sup>            |
| Chlorella regularis       | Green        | Ethanol             |                                   |
| Chlorella vulgaris        | Green        | Ethanol             |                                   |
| Chlorococcum humicola     | Green        | Ethanol             | 7.2 g/l or 10 g/L                 |
| Chlorococcum infusionum   | Green        | Ethanol             | 0.26 g ethanol/g algae            |
| Chlorococum sp.           | Blue-Green   | Biodiesel           | 10.0 g/L                          |
| Chlorococum sp.           | Blue-Green   | Ethanol             | 3.83 g/L                          |
| Dunaliella sp.            | Green        | Ethanol             | 11.0 mg/g                         |
| Haematococcus pluvialis   | Red          | Biodiesel           | 420 GJ/ha/yr                      |
| Neochlorosis oleabundans  | Green        | Biodiesel           | 56.0 g g <sup>-1</sup>            |
| Platymonas subcordiformis | Green        | Hydrogen            |                                   |
| Scenedesmus obliquus      | Green        | Methanol, Hydrogen  |                                   |
| Spirogyra                 | Green        | Ethanol             |                                   |
| Spirulina platensis       | Green        | Hydrogen            | 1.8 mmol mg <sup>-1</sup>         |
| S. platensis UTEX 1926    | Blue-Green   | Methane             | 0.40 m3 kg <sup>-1</sup>          |
| Spirulina Leb 18          | Blue-Green   | Methane             | 0.79 g L <sup>-1</sup>            |

Tabella 1.2 - Diversi tipi di biocombustibile da microalghe

Le tecniche di coltivazione di microalghe destinate alla produzione di biocombustibili sono, per ora, sviluppate in impianti pilota, con elevati costi di investimento, ma si prevede che nel medio-lungo termine, con la produzione congiunta di altri co-prodotti (prodotti farmaceutici e nutraceutici, additivi per mangimi animali, bioplastiche ecc.) e l'integrazione con altri processi (quali il recupero dei gas di scarico e il trattamento delle acque reflue), la produzione di biodiesel da microalghe, oltre che sostenibile, potrebbe diventare una soluzione economicamente percorribile [Amicarelli et al, 2012].

# 1.1.2 Mitigazione delle emissioni di gas a effetto serra e di trattamento delle acque reflue

Le alghe possono essere utilizzate anche per il trattamento delle acque reflue, in particolare per la rimozione di azoto e fosforo dagli effluenti, con la conseguente riduzione dell'impiego di acqua dolce e dell'eutrofizzazione dell'ambiente marino. Sulla base dei dati attualmente disponibili, relativi ad impianti pilota, risulta che, rispetto alle altre colture oleaginose impiegate per la produzione di biodiesel, la coltivazione delle alghe appare quindi più vantaggiosa in termini di impatto ambientale (Tabella 1.3), in quanto comporta minori emissioni di CO<sub>2</sub> in atmosfera, un minor impiego di acqua e l'occupazione di una superficie inferiore.

| Materia prima | Emissioni di<br>CO <sub>2</sub><br>(gCO <sub>2</sub> eq/MJ) | Impiego di<br>acqua<br>(g/m²/g) | Superficie necessaria per<br>soddisfare la domanda<br>mondiale di petrolio<br>(10 <sup>6</sup> ha) |
|---------------|-------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------|
| Jatropha      | 56,7                                                        | 3.000                           | 2.600                                                                                              |
| Alga          | 3                                                           | 16                              | 50-400                                                                                             |
| Olio di palma | 138,7                                                       | 5.500                           | 820                                                                                                |
| Colza         | 78,1                                                        | 1.370                           | 4.100                                                                                              |
| Soia          | 90,7                                                        | 530                             | 10.900                                                                                             |

Tabella 1.3 - Emissioni di gas climalteranti, impieghi di acqua e terra, costi totali di produzione del biodiesel da diverse materie prime [Dinh et al., 2009; Smith et al., 2009]

Microrganismi fotosintetici quali le microalghe possono utilizzare agenti inquinanti come nutrienti (N, P e K) e crescere in conformità con le condizioni ambientali, quali luce, temperatura, pH, salinità, e CO<sub>2</sub>.

Molti ricercatori considerano le microalghe come un mezzo tecnologico ed ecologico per la rimozione degli inquinanti dalle acque di scarico.[Markou et al., 2011; Abdel-Raouf et al., 2012; Subashchandrabose et al., 2013; de-Bashan & Bashan, 2010; Park et al., 2011; Christenson & Sims, 2011; Gattullo et al., 2012; Pittman et al., 2010; Mulbry et al., 2010; Chiu et al., 2008-2009; Muñoz et al., 2009]

La rimozione di inquinanti organici ed inorganici  $(NO_3^-, NO_2^-, NH_4^+, PO_4^{3-}, CO_2, Cd, Zn, Ni, Co, Mn, Cu, Cr, U, Hg(II), Cd(II), Pb(II), B, TBT (tributilstagno), fenoli e composti azoici) da acque reflue effettuata da diverse microalghe è riportata nella Tabella 1.4.$ 

| Specie microalgale                | Controllo dell'inquinamento         |  |
|-----------------------------------|-------------------------------------|--|
| Anabaena, Oscilatoria,            | NO- NO- NU+ DO3-                    |  |
| Spirulina, S. platensis           | $NO_3^-, NO_2^-, NH_4^+, PO_4^{3-}$ |  |
| Anabaena sp.                      | 2,4,6-trinitrotoluene               |  |
| Ankistrodesmus sp,                |                                     |  |
| Scenedesmus sp, Microactinium     | $CO_2$                              |  |
| sp, Pediastrum sp.                |                                     |  |
| Chlamydomonas reinhardtii         | Hg (II), Cd(II), Pb(II)             |  |
| Chlorella sp.                     | Boro                                |  |
| Chlorella miniata                 | TBT                                 |  |
| Chlorella vulgaris, Chlorella sp. | TBT                                 |  |
| Chlorella vulgaris                | composti azoici                     |  |
| Chlorella vulgaris                | $NH_4^+, PO_4^{3-}$                 |  |
| Chlorella spp.                    | P                                   |  |
| Chlorella vulgaris                | Cd, Zn                              |  |
| Chlorella vulgaris,               | N. P                                |  |
| Scenedesmus rubescens             | 14, 1                               |  |
| Chlorella salina                  | Co, Zn, Mn                          |  |
| Coelastrum proboscideum           | Pb                                  |  |
| Isochrysis galbana                | $NH_4^+$                            |  |
| Ochromonas danica                 | fenoli                              |  |
| Oedogonium hatei                  | Ni                                  |  |
| Oedogonium sp, Nostoc sp.         | Pb                                  |  |
| Oscillatoria sp. H1               | Cd(II)                              |  |
| Phormidium bigranulatum           | Pb(II), Cu(II), Cd(II)              |  |
| Phormidium laminosum              | Cu(II), Fe(II), Ni(II), Zn(II)      |  |
| Scenedesmus quadricauda           | Cu(II), Zn(II), Ni(II)              |  |
| Spirulina platensis               | Cr(VI)                              |  |
| Streptomyces viridochromogenes,   | U                                   |  |
| Chlorella regularis               | -                                   |  |
| Ulva lactuca                      | Pb (II), Cd (II)                    |  |
| Undaria pinnatifida               | Ni, Cu                              |  |

Tabella 1.4 - Controllo dell'inquinamento di diverse microalghe

Finora, le microalghe sono gli organismi studiati più veloci nella fotosintesi che hanno prodotto dei lipidi con H<sub>2</sub>O e CO<sub>2</sub>. In aggiunta al potenziale di cattura di CO<sub>2</sub> dalle centrali elettriche fossili, le microalghe offrono notevoli vantaggi aggiuntivi di acquisizione diretta di CO<sub>2</sub> atmosferica [Kadam, 1997-2001].

Il primo caso è un modo molto efficiente per la cattura della CO<sub>2</sub>, facendo passare direttamente i fumi di scarico attraverso l'ambiente acquoso in cui sono coltivate le microalghe [Benemann, 1997].

La Tabella 1.5 [Maity et al., 2014] mostra l'efficacia di diverse specie microalgali nella fissazione della CO<sub>2</sub>

| Specie Microalgale   | Tasso di fissazione di CO <sub>2</sub> (g/m³/h) o efficienza di rimozione (%) |
|----------------------|-------------------------------------------------------------------------------|
| Chlorogleopsis sp.   | 0.8 - 1.9                                                                     |
| Chlorella sp.        | 16 - 58%                                                                      |
| Chlorella sp. NCTU-2 | 63%                                                                           |
| Chlorella sp.        | 10 - 50%                                                                      |
| Chlorella vulgaris   | 128 – 141                                                                     |
| Chlorella vulgaris   | 80 – 260                                                                      |
| Chlorella vulgaris   | 148                                                                           |
| Euglena gracilis     | 3.1                                                                           |
| Porphyridium sp.     | 3 – 18                                                                        |
| S. platensis         | 38.3 – 60                                                                     |

Tabella 1.5 - Fissazione di CO2 da diversi alghe

#### 1.1.3 Prodotti nutraceutici e farmaceutici

Oltre agli oli, la biomassa algale contiene significative quantità di proteine, carboidrati e altri nutrienti che possono essere impiegati per produrre diversi prodotti che, collocati su mercati diversi, costituiscono altre fonti di reddito.

La valorizzazione di questi co-prodotti di medio-alto valore economico (da diverse centinaia a qualche migliaia di \$/kg) consentirebbe di ridurre notevolmente il costo di produzione del biodiesel.

Verranno descritti di seguito alcuni potenziali prodotti delle biotecnologie microalgali.

#### Omega-3:

Molte microalghe accumulano elevati livelli di acidi grassi polinsaturi (PUFA)  $\omega$ -3, come l'acido eicosapentaenoico (EPA) e l'acido docosaesaenoico (DHA).

I PUFA ω-3 ed ω-6 sono acidi grassi essenziali nella dieta di molti animali, compresi gli esseri umani, i quali non sono in grado di sintetizzarli.

Diverse linee di evidenza suggeriscono che gli esseri umani si sono evoluti basandosi su una dieta che aveva un rapporto fra PUFA ω-6 ed ω-3 di 1:1, mentre nella dieta occidentale questo rapporto è aumentato a 15:1 [Simopoulos, 2008].

Ciò si traduce in una maggiore attività delle risposte pro-infiammatorie mediate dall'acido arachidonico (un ω-6 a catena lunga), che a loro volta provocherebbero l'aumento dell'incidenza di malattie cardiovascolari e certi tipi di cancro.

Un rapporto fra PUFA ω-6 ed ω-3 di 4:1 nella dieta riduce del 70% la mortalità nella prevenzione secondaria delle malattie cardiovascolari, mentre un rapporto di 2,5:1

riduce la proliferazione cellulare rettale in pazienti con cancro al colon retto o sopprime l'infiammazione in pazienti con artrite reumatoide [Simopoulos, 2008].

Inoltre, gli  $\omega$ -3 hanno un ruolo importante nella funzione cerebrale: il DHA rappresenta il 40% dei fosfolipidi di membrana nel cervello e studi con primati non umani e neonati umani indicano che il DHA è essenziale per lo sviluppo funzionale del cervello, in particolare nei neonati prematuri [Simopoulos, 2011].

La maggior parte degli ω-3 nella nostra dieta è presente sotto forma di acido ω-linolenico (ALA), un PUFA comune nelle noci e nell'olio di lino.

Nel nostro corpo, l'ALA viene convertito in DHA ed EPA in maniera inefficiente (<10%).

Le principali fonti alimentari di DHA e EPA sono il pesce (tonno, salmone, sardine, aringhe) e l'olio di pesce. Le proiezioni mostrano una stabilizzazione della produzione ittica mondiale, con la cattura progressivamente sostituita dall'acquacoltura, mentre la produzione mondiale di olio di pesce è attualmente di circa 1 M tonnellate/anno e presenta un trend leggermente decrescente.

L'aumento del pesce prodotto tramite acquacoltura presenta un problema di sostenibilità: il mangime dei pesci più pregiati, come orate, branzini e salmoni,

contiene proteine e olio derivati dal pesce catturato. Nel settore generale dell'acquacoltura il rapporto fra pesce catturato utilizzato per i mangimi e pesce prodotto è di 0,63, ma esso sale fino a 5,0 per il salmone [Naylor et al.,2009].

La domanda crescente per le proteine e l'olio di pesce per acquacoltura ha portato ad un aumento del 30-40% del loro prezzo nel 2012.

Ma la domanda più forte di ω-3 a catena lunga proviene dal settore della nutrizione umana. Assumendo una dose giornaliera raccomandata di 2 grammi/giorno di olio ricco in ω-3 e una popolazione mondiale di 9 Mld nel 2050, la domanda potenziale per l'alimentazione umana è di 6,5 Mln di tonnellate, o 260 Mld di € al costo attuale di 40 €/Kg.

Di questo, solo 1 Mln di tonnellate sarà verosimilmente coperto dall'olio di pesce. Appare evidente come fonti alternative a basso costo vadano reperite rapidamente [Giuliano et al., 2013].

#### Carotenoidi:

Il mercato dei carotenoidi è stimato in circa 1,2 miliardi di € nel 2010, con la possibilità di crescere a 1,4 miliardi di € nel 2018. I composti più venduti sono il beta-carotene e la luteina (usati rispettivamente come supplementi alimentari per la prevenzione dell'avitaminosi A e della degenerazione maculare legata all'età, una malattia degenerativa della retina) e l'astaxantina, usata come additivo alimentare

nell'industria ittica, ma con potenziali applicazioni anche come antiossidante nell'alimentazione umana [Greaves et al., 2012].

I prezzi variano notevolmente, da 20 €/kg per il beta-carotene, a 4.000 €/kg per l'astaxantina.

Il mercato attuale è dominato dai composti di sintesi chimica, con l'eccezione della luteina, che viene estratta dai petali della calendula e l'annatto, che viene estratto dai semi di Bixa orellana.

Le microalghe sono in grado di sintetizzare la maggior parte di questi composti, spesso in una forma altamente pura, come il beta-carotene prodotto da Dunaliella salina e l'astaxantina prodotta da Haematococcus pluvialis.

L'obiettivo della ricerca biotecnologica è ridurre i costi di produzione da microalghe fino a livelli competitivi con quelli dei composti di sintesi.

Dato che tali costi sono da 20 a 4.000 volte più alti di quelli dei carburanti fossili, è evidente che questo è un obiettivo molto più facilmente raggiungibile, nel breve periodo, di quello della produzione di biocarburanti [Giuliano et al., 2013].

#### Proteine per uso alimentare:

La Spirulina (ora Arthrospira) è un cianobatterio molto ricco in proteine, cosmopolita e capace di crescere in acque alcaline, ad un pH di 8-11 e temperature di 32- 45 °C, con produzioni potenziali di 30 T proteina/ha/ anno.

La Spirulina veniva utilizzata come cibo dagli Aztechi e, a tutt'oggi, da varie popolazioni africane.

Il suo utilizzo per complementare la parte proteica della dieta è stato proposto da numerosi gruppi [Khan et al., 2005].

Una potenziale applicazione della Spirulina, e delle microalghe più in generale, è la sostituzione delle proteine di origine animale nei mangimi, in particolare quelli usati in acquacoltura.

Le proteine di origine microalgale si sono rivelate dei buoni sostituti per quelle di origine animale nella dieta dei pesci di allevamento [Olvera-Novoa et al., 2008].

# Proteine per uso farmaceutico:

Infine, le microalghe stanno emergendo come un sistema alternativo per la produzione di farmaci.

Questa piattaforma relativamente nuova offre diversi vantaggi, tra cui:

- 1) un tempo breve dalla generazione della microalga transgenica allo "scaling up";
- 2) crescita rapida (tempo di duplicazione di poche ore) e facilità di coltivazione;
- 3) sicurezza, in quanto le microalghe non sono veicolo di agenti patogeni umani o animali e sono generalmente considerate sicure;
- 4) crescita in condizioni sterili, il che agevola la produzione di proteine per uso umano.

Alcune microalghe, con un potenziale utilizzo nella mangimistica, stanno ricevendo attenzione come veicoli per la produzione di vaccini orali contro le malattie animali più comuni [Giuliano et al., 2013].

L'interesse per l'uso delle microalghe per la produzione di biocarburanti ha dato l'avvio ad una ricerca intensa sulla loro biologia.

La genomica e la biotecnologia delle microalghe, fino a pochi anni fa oggetto di studio da parte di pochi, ricevono un interesse sempre maggiore da parte della comunità scientifica e dell'industria biotecnologica.

L'ostacolo maggiore al loro utilizzo è l'attuale costo di produzione, calcolato in circa 5 €/kg di biomassa secca [Norsker et al., 2011].

Tale costo va ridotto di almeno 10 volte per un utilizzo nel settore dei biocarburanti, mentre è già ora compatibile con la produzione di altri prodotti, come additivi alimentari, molecole per la chimica fine, proteine di interesse farmaceutico, vaccini animali a basso costo.

La ricerca in questi settori è foriera di risultati interessanti nel breve-medio periodo.

#### 1.2 Metabolismo e crescita

Ci sono diversi fattori che influenzano la crescita delle alghe: fattori abiotici come la luce (qualità, quantità), temperatura, concentrazione di nutrienti, O<sub>2</sub>, CO<sub>2</sub>, pH, salinità, e sostanze chimiche tossiche; fattori biotici come agenti patogeni (batteri, funghi, virus) e la concorrenza da altre alghe; fattori operativi quali taglio prodotto da miscelazione, tasso di diluizione, profondità, frequenza di raccolta e l'aggiunta di bicarbonato [Mata et al., 2010].

Non solo carbonio organico (o fonti di carbonio come zuccheri, proteine e grassi), vitamine, sali e altre sostanze nutritive (azoto e fosforo) sono vitali per la crescita delle alghe, ma anche un equilibrio tra i parametri operativi (ossigeno, anidride carbonica, pH, temperatura, intensità della luce) [Williams, 2002].

Quindi, in base ai risultati che si vogliono ottenere (concentrazione di biomassa, velocità di crescita, percentuale di lipidi), bisogna proporzionare questi fattori, che varieranno con la specie microalgale e con le varie fasi di crescita.

Nella Tabella 1.6 [Amicarelli et al., 2012] sono elencate delle variabili che influenzano lo sviluppo cellulare microalgale.

| Specie di<br>alghe          | Influenza il tipo di prodotto che si vuole produrre;<br>per la produzione del biodiesel si preferiscono le<br>alghe con un più elevato contenuto in olio e un più<br>veloce tasso di crescita.         |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Aerazione e CO <sub>2</sub> | Le alghe necessitano di aerazione per fissare la CO <sub>2</sub> e crescere; si potrebbe utilizzare una fonte secondaria di CO <sub>2</sub> , come i gas di scarico delle centrali elettriche.         |  |
| Nutrienti                   | La composizione del suolo e/o dell'acqua influenza il tasso di crescita delle alghe; l'impiego di acque reflue, con elevata concentrazione di azoto, stimolerebbe la crescita delle alghe.             |  |
| Luce                        | Di solito per la fotosintesi si impiega la luce solare;<br>sono però in corso di sperimentazione alcuni<br>impianti, più costosi, che impiegano fonti luminose<br>artificiali per la crescita al buio. |  |
| Livello pH                  | La crescita ottimale delle alghe necessita un pH tra 7 e 9, valore che può essere influenzato dalla quantità di CO <sub>2</sub> e dei nutrienti.                                                       |  |
| Miscelazione                | Affinché tutte le cellule delle alghe siano ugualmente esposte alla luce e per evitare la sedimentazione è necessaria la loro miscelazione.                                                            |  |
| Temperatura                 | Alcune specie di alghe richiedono temperature miti durante la crescita (20-30 °C).                                                                                                                     |  |

Tabella 1.6 - Variabili di crescita microalgale

#### 1.2.1 Cinetica di crescita

Prima di descrivere i metodi attualmente utilizzati per la produzione su larga scala di microalghe, si vuole approfondire alcuni di questi fattori che determinano la velocità di crescita, quanto basta per comprendere le scelte tecnologiche utilizzate sino ad ora e per giustificare le decisioni prese per il dimensionamento del fotobioreattore oggetto di questa relazione.

La Figura 1.2 rappresenta la curva di crescita delle alghe in una coltura lotto (linea continua) e la concentrazione di nutrienti (linea tratteggiata), in cui cinque fasi di crescita ragionevolmente ben definiti possono essere riconosciuti: (1) fase logaritmica; (2) fase di crescita esponenziale, che rappresenta il massimo tasso di crescita nelle condizioni specifiche; (3) fase di crescita lineare; (4) fase di crescita stazionaria; (5) fase di morte o di diminuzione.

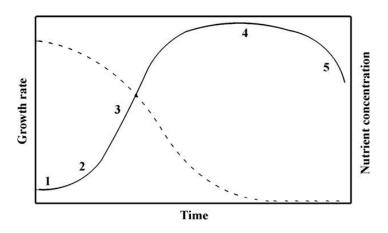



Figura 1.2 - Curva di crescita microalgale e di concentrazione di nutrienti

Generalmente le colture algali in fase di crescita esponenziale contengono più proteine, mentre le colture in fase stazionaria hanno più carboidrati e glicogeno.

Ad esempio, secondo De Pauw et al. (1984) ostriche alimentati da alghe del primo tipo di solito crescono meno.

#### 1.2.2 La luce come variabile operativa

In generale, per la crescita della biomassa (composta dal 40-50% di carbonio) le microalghe dipendono da un approvvigionamento sufficiente di una fonte di carbonio e da una sorgente luminosa per svolgere la fotosintesi [Mata et al., 2010].

Dal punto di vista tecnologico, è proprio l'approvvigionamento di luce il fattore che suscita più interesse nonché il maggiore per crescita e produttività.

L'energia utilizzata dalle microalghe per la fotosintesi è la luce; questa, come evidenziato in Figura 1.3, è una piccola porzione dello spettro elettromagnetico;

i diversi tipi di radiazione differiscono per la lunghezza d'onda e di conseguenza per la quantità di energia associata ad ogni singolo fotone.

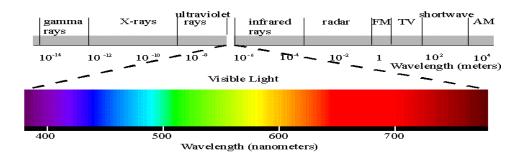



Figura 1.3 - Spettro elettromagnetico in cui viene evidenziata la porzione corrispondente alla luce visibile

L'irradianza o intensità di luce è definita come il flusso di fotoni e viene espressa in  $[\mu E m^{-2} s^{-1}]$ , dove E (Einstein) corrisponde a una mole di fotoni; per calcoli effettuati su larga scala l'irradianza invece è solitamente definita in termini di  $[W/m^2]$ .

La fotosintesi utilizza solo i fotoni appartenenti ad un intervallo di lunghezze d'onda detto PAR, corrispondente alle lunghezze d'onda comprese tra 400 nm e 700 nm.

Uno dei modelli matematici proposti in letteratura che mette in relazione la cinetica di crescita microalgale con la quantità di luce utilizzata è quello di Molina Grima (1999):

## Modello cinetico di Molina Grima

Esso parte dalla definizione di intensità media I<sub>av</sub> come media volumetrica delle intensità puntuali che si trovano all'interno di un fotobioreattore in virtù della distribuzione della luce [Richmond, 2004]

$$I_{av} = \frac{1}{V} \int_{V} I \ dV$$

Le singole microalghe si spostano continuamente tra zone di diversa intensità luminosa e ciascuna cellula subisce una variazione istantanea dei livelli di esposizione.

L'ipotesi alla base di questo modello è che la microalga adatti la propria velocità di crescita all'intensità media tra quelle ricevute nel cammino percorso.

Introduciamo il tasso di crescita specifico µ [h-1] definito come l'aumento della massa cellulare per unità di tempo per massa cellulare unitaria [Sandnes et al., 2005]

$$\frac{dN}{dt} = \mu \cdot N$$

dove N è il numero di cellule e t il tempo.

Integrando tra le condizioni iniziali e finali, si ottiene:

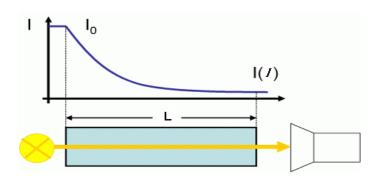
$$\mu = \frac{\ln \frac{N_f}{N_i}}{t_f - t_i} \qquad [h^{-1}]$$

In un reattore perfettamente agitato, la velocità di crescita  $\mu$  [h<sup>-1</sup>] si può esprimere come funzione della  $I_{av}$  [Molina Grima et al., 1994]

$$\mu = \mu_{max} \frac{I_{av}^q}{I_k^q + I_{av}^q}$$

dove  $\mu_{max}$  è la velocità massima di crescita  $[h^{\text{-}1}]$  ed  $I_k$   $[\mu Em^{\text{-}2} \text{ s}^{\text{-}1}]$  è una costante specifica di irradianza che rappresenta la  $I_{av}$  in grado di dare una velocità di crescita pari a metà di quella massima.

Il modello possiede un vantaggio significativo rispetto ai numerosi altri modelli di questo tipo pubblicati in letteratura: quello di tenere conto dei fenomeni fondamentali della fotoinibizione e della fotolimitazione. Si suppone infatti che la fotoinibizione abbia luogo solo ad intensità luminose molto elevate, le quali si riscontrano in volumi limitati del reattore e prossimi alla superficie irradiata.


Per tenere conto del fenomeno, il parametro q dell'equazione (n) viene espresso in funzione dell'intensità luminosa maggiore che si può avere nel reattore, ovvero quella alla supeficie  $I_{z=0}$ ; nelle rimanenti zone del reattore, anche in quelle soggette a fotolimitazione, si assume che abbia luogo la rigenerazione delle cellule danneggiate [Molina Grima et al., 1999].

$$\mu = \mu_{max} \frac{I_{av}^{\left(b + \frac{c}{I_{z=0}}\right)}}{\left[I_{k}\left(1 + \left(\frac{I_{z=0}}{K_{i}}\right)^{a}\right)\right]^{\left(b + \frac{c}{I_{z=0}}\right)} + I_{av}^{\left(b + \frac{c}{I_{z=0}}\right)}}$$

Si deve stimare anche il valore del coefficiente di assorbimento della luce, a partire dal valore dell'intensità luminosa; dal momento che l'intensità di radiazione diminuisce in modo esponenziale in tutto il percorso ottico e l'intensità di radiazione sul bordo del lato illuminato del reattore è denotato con I<sub>0</sub>, allora l'intensità ad una distanza x dal lato illuminato del reattore piatto è dato da [Richmond, 2004]:

$$I(x) = I_0 e^{-k_{\lambda} \cdot x}$$
 (legge di Lambert-Beer)

dove  $k_{\lambda}$  è il coefficiente di attenuazione (che è una costante tipica del mezzo attraversato e dipende dalla lunghezza d'onda  $\lambda$ ) e x è lo spessore di soluzione attraversata. (Se x è in cm, allora  $k_{\lambda}$  sarà in cm<sup>-1</sup>)



**Figura 1.4** - Rappresentazione grafica della legge di Lambert Beer; l'intensità di luce diminuisce in modo esponenziale attraverso il materiale

La radiazione media è data da una media di valore di I(x) su tutto il percorso ottico  $(0 \le x \le L)$ :

$$I_{av} = \frac{1}{L} \int_{0}^{L} I(x) dx = \frac{I_{0}}{L} \int_{0}^{L} e^{-k_{\lambda} \cdot x} dx = I_{0} \frac{1 - e^{-k_{\lambda} L}}{k_{\lambda} L}$$

Per densità molto bassa, il coefficiente di assorbimento è molto basso  $(k_{\lambda}L \le l)$  e l'ultima espressione può essere approssimata con:

$$I_{av} = I_0 \left( 1 - \frac{1}{2} k_{\lambda} L \right)$$

Per densità molto elevata, il coefficiente di assorbimento è alto  $(k_{\lambda}L>>1)$  e  $(I_0e^{-kL})\approx 0$ 

$$I_{av} \cong \frac{I_0}{k_{\lambda}L}$$

In prima approssimazione il coefficiente di assorbimento varia linearmente con la densità della coltura:

$$k_{\lambda} = \alpha \rho$$

 $\rho$  = densità della coltura [g/l]

 $\alpha$  = coefficiente di proporzionalità determinato empiricamente.

Nelle colture di densità molto elevata,  $k_{\lambda}$  potrebbe avere una dipendenza non lineare dalla densità:

$$k_{\lambda} = \alpha \rho + \beta \rho^2$$

Per avere un'idea di come l'intensità di radiazione media varia con la densità della coltura, si utilizza l'approssimazione lineare. Quindi l'espressione per l'intensità media diventa:

$$I_{av} = I_0 \frac{1 - e^{-\alpha \rho L}}{\alpha \rho L}$$

## 1.2.3 La Temperatura

La temperatura, dopo la luce, è il fattore limitante più importante per la coltura di alghe in entrambi i sistemi esterni chiusi e aperti. Gli effetti della temperatura per molte specie di microalghe in laboratorio sono ben documentati, ma la grandezza degli effetti della temperatura nella produzione annuale di biomassa all'aperto non è ancora sufficientemente riconosciuta.

Molte microalghe possono facilmente sopportare temperature fino a 15 °C inferiori al loro ottimale, ma superare la temperatura ottimale di solo 2 - 4 °C può comportare la perdita totale della coltura. Inoltre, durante alcuni giorni caldi, possono verificarsi problemi di surriscaldamento in

sistemi di coltura chiusi, dove la temperatura all'interno del reattore può raggiungere 55 °C.

In questo caso può essere utilizzato un sistema di raffreddamento ad acqua nebulizzata per diminuire la temperatura intorno ai 20 - 26 °C [Mata et al., 2010].

# **CAPITOLO 2**

## 2. Sistemi per la produzione di microalghe su larga scala

Le microalghe possono essere coltivate in sistemi aperti (Open Ponds), come laghi o stagni, e in sistemi di coltura chiusi altamente controllati chiamati fotobioreattori (PBR). Un bioreattore è definito come un sistema in cui si ottiene una conversione biologica. Così, un fotobioreattore è un reattore in cui organismi fototrofi (microbici, cellule algali o vegetali) sono coltivati o utilizzati per effettuare una reazione fotobiologica.

Anche se questa definizione può applicarsi a entrambi i sistemi, sia chiusi che aperti, ci riferiremo, con il termine di fotobioreattore, ai soli sistemi chiusi [Mata et al., 2010].

La scelta del sistema di coltura da utilizzare deve basarsi su diversi fattori: il terreno di coltura, la quantità d'acqua, le sostanze nutritive, la temperatura, il consumo energetico e il prodotto finale che si vuole ottenere.

Esempi di sistema aperto e sistema chiuso sono riportati in Figura 2.

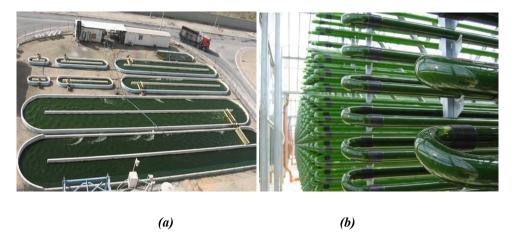



Figura 2 - Esempi di sistema di coltivazione: (a) sistema aperto (raceway ponds) e (b) sistema chiuso (fotobioreattore tubolare)

## 2.1 Open Ponds (Sistemi Aperti)

Attualmente la coltivazione a livello industriale delle microalghe avviene in sistemi di produzione basati su *open pond*. Il motivo principale è l'economicità del sistema, dovuta alla semplicità della gestione e legata sia ai bassi costi di costruzione che di esercizio. A contribuire al successo di queste apparecchiature, è stata sicuramente la

loro diffusione fin dagli anni '50 che ha determinato l'approfondita conoscenza e consolidamento della tecnologia.

Ci sono molti tipi di *open pond* che si differenziano per forma, dimensioni, materiale, inclinazione e agitazione della massa acquosa. I più usati a livello industriale sono di due tipi: sistemi inclinati, dove la miscelazione è data dalla forza di gravità e dalle pompe, e vasche "a circuito" (*raceway pond*) dove la massa compie un circuito chiuso mossa da pale rotanti. La seconda tipologia, rappresentata schematicamente in Figura 2.1, è senz'altro la più diffusa. Il modello più semplice è rappresentato da una vasca di spessore variabile dai 15 cm ai 30 cm, coperta con un telo di plastica che non permetta perdite della coltura attraverso il terreno. Le pale sono sempre in movimento per evitare che ci siano sedimentazioni ma la coltura cresce solamente nelle ore diurne dove la luce solare batte sulla superficie della vasca.

Le tecnologie degli *open pond* presentano molti aspetti problematici che ne limitano la produttività. Lo spessore ad esempio non può essere minore di 15 cm (che consentirebbe di abbassare i volumi in gioco) perché altrimenti non ci sarebbe più un buon mescolamento, e non può superare i 30 cm altrimenti ci sarebbero problemi di penetrazione dei raggi solari con relativa diminuzione dell'efficienza [Richmond, 2004].

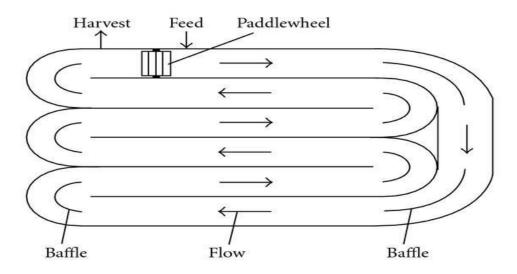



Figura 2.1 - Veduta in pianta di una raceway pond (Chisti, 2007)

La concentrazione algale è molto bassa e questo facilita la contaminazione oltre che aumentare i costi della separazione della biomassa dalla massa acquosa. Inoltre la produttività areale ha un limite sui 12-13 g/m²/d [Norsker et al., 2011] a meno di portare modifiche sostanziali alla tecnologia, facendole perdere la sua caratteristica principale, ovvero l'economicità e la semplicità di esercizio. I sistemi all'aperto sono sensibili alle variazioni climatiche e risentono molto del fenomeno dell'evaporazione, che rende questo sistema poco efficiente nell'uso delle risorse idriche. Un altro problema è la grande necessità di aree di coltivazione e quindi di volumi da trattare, che a parità di produttività maggiore sono superiori rispetto ad un sistema chiuso, per la minore efficacia nello sfruttamento della fotosintesi. Anche la distribuzione della CO<sub>2</sub> è meno efficiente rispetto ad un fotobioreattore. Tutti questi problemi non sono superabili da questa tecnologia la quale ad oggi può ancora essere conveniente ma non presenta buone prospettive per il futuro.

#### 2.2 Fotobioreattori

I fotobioreattori sono sistemi ancora in fase di sviluppo e sembrano essere la soluzione tecnologica più promettente per il futuro dei biocarburanti di terza generazione. Contrariamente ai sistemi all'aperto, i fotobioreattori permettono di crescere le colture evitando che ci siano contaminazioni.

Ce ne sono diversi tipi, reattori tubolari, reattori a bolle, orizzontali, verticali e a pannelli (*flat-plate*). Di seguito saranno descritti solamente i fotobioreattori più diffusi, quelli tubolari, anche se le caratteristiche possono essere estese in generale a qualsiasi sistema di produzione al chiuso.

## Fotobioreattori tubolari

I reattori tubolari consistono in una serie di tubi trasparenti, di vetro o plastica, all'interno dei quali viene fatta scorrere la coltura. I tubi devono essere esposti alla fonte di luce, la quale può essere artificiale o solare. Il diametro dei tubi è limitato poiché non si deve permettere alle alghe di rimanere in ombra altrimenti non riceverebbero l'energia sufficiente a crescere. Per questo difficilmente si costruiscono tubi con diametri superiori a 0.1 m [Chisti, 2007].

La coltura è ricircolata dall' interno dei tubi a una colonna di degasaggio dove è alimentato il *medium* fresco. La Figura 2.2 mostra uno schema tipico di un fotobioreattore tubolare. La movimentazione della massa acquosa può avvenire tramite pompaggio oppure con insufflazione di aria. Questo metodo comporta un minore stress meccanico applicato alle cellule e quindi meno possibilità di danneggiarle; permette un miglior scambio tra la fase gassosa ricca di CO<sub>2</sub> e la fase liquida; la movimentazione avviene senza parti meccaniche in moto [Xu et al., 2009].

La disposizione dei tubi deve essere tale da rendere massima l'illuminazione, quindi i tubi sono disposti in direzione nord-sud e non di rado la superficie sui quali poggiano i tubi è resa bianca (con un rivestimento ad esempio) in modo da riflettere la luce e aumentare l'esposizione della coltura. Molti reattori tubolari sono costruiti in forma elicoidale, attorno ad una struttura cilindrica.

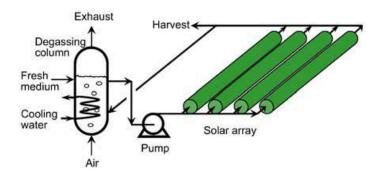



Figura 2.2 - Schema tipico di un fotobioreattore tubolare con relativa colonna di degasaggio

L' illuminazione è garantita di solito attraverso luce naturale, per garantire l'economicità del processo. Tuttavia, riscuote molto interesse anche l'applicabilità dell'illuminazione artificiale, sia in ambito di laboratorio, sia su scala industriale per ricavare prodotti ad alto valore aggiunto.

La lunghezza dei tubi è limitata dall' accumulo di ossigeno all' interno del fotobioreattore, infatti non è possibile scaricare l' ossigeno prima che la coltura non sia uscita dai tubi, ovvero fino a che non sia passata un tempo pari al tempo di residenza. Per questo nella colonna di accumulo avviene il degasaggio, con la liberazione dell' ossigeno generato.

Tra i vantaggi dei fotobioreattori c'è senz'altro il miglior controllo delle condizioni operative della coltura. È infatti più semplice rispetto ad un *open pond* controllare la

temperatura di crescita delle alghe, il pH all' interno dei tubi, le concentrazioni. Il pH in particolare è molto importante perché il consumo di CO<sub>2</sub> porta ad un aumento del pH che deve rimanere entro certi limiti per non danneggiare la coltura. Se necessario si può controllare questo fenomeno con delle alimentazioni intermedie nei tubi di altra CO<sub>2</sub>.

#### 2.3 Differenze tra sistemi aperti e sistemi chiusi

I sistemi aperti sono meno costosi da costruire, hanno una durata più lunga e una maggiore capacità produttiva rispetto ai sistemi chiusi, anche se occupano una superficie maggiore. Rispetto ai sistemi chiusi, però, le vasche presentano un maggior fabbisogno di energia (per omogeneizzare i nutrienti) e di acqua (almeno 150 L/m²) [Richmond, 2004]; inoltre sono più suscettibili alle condizioni ambientali (uno dei fattori limitanti è la variabilità della temperatura dell'acqua, dell'evaporazione e dell'illuminazione) e alla contaminazione da parte di altre microalghe indesiderate, lieviti, funghi, muffe e batteri [Amicarelli et al., 2012].

Nel 2010 il 98% della produzione mondiale di alghe (circa 10.000 t) era prodotta con le vasche [Thurmond, 2011].

I fotobioreattori consentono di avere un miglior controllo delle condizioni e dei parametri di crescita della coltura (pH, temperatura, ossigeno, CO2), minori perdite di anidride carbonica, una maggiore densità delle microalghe e produttività volumetrica oltre ad una riduzione della contaminazione da parte di altri microrganismi.

Le principali limitazioni riguardano invece il surriscaldamento, l'accumulo di ossigeno, gli elevati costi di costruzione e funzionamento dell'impianto. I costi di investimento per i fotobioreattori, infatti, sono maggiori delle vasche, soprattutto se si utilizzano i tubi in policarbonato [Amicarelli et al., 2012].

La comparazione dei due sistemi di coltura non è semplice in quanto ci sono diversi parametri da considerare. In genere si valutano la produttività volumetrica

(produttività per unità di volume del reattore), la produttività areale (produttività per unità di superficie occupata dal reattore) e la resa in olio.

I sistemi chiusi sono migliori delle vasche per la produttività volumetrica (8-13 volte maggiore). Inoltre la biomassa raccolta con i fotobioreattori costa meno di quella recuperata nelle vasche in quanto raggiunge una concentrazione maggiore di circa 16-30 volte. Ciononostante i costi totali di produzione e di gestione sono minori per le vasche [Amicarelli et al., 2012].

## 2.4 Funzionamento Batch (discontinuo) rispetto al funzionamento continuo

I fotobioreattori possono funzionare in modo discontinuo o continuo.

Vi sono molti vantaggi nell' utilizzare bioreattori continui piuttosto che quelli operanti in modalità batch [Williams, 2002]:

- I bioreattori continui forniscono un più alto grado di controllo rispetto la modalità batch;
- I tassi di crescita possono essere regolati e conservati per un periodo di tempo prolungato e le concentrazioni della biomassa possono essere controllate variando il tasso di diluizione;
- A causa dello stato stazionario dei bioreattori continui, i risultati sono più affidabili e facilmente riproducibili e la qualità del prodotto desiderata può essere più facilmente ottenuta;
- Le reazioni continue offrono maggiori opportunità per le indagini e l'analisi di sistema.

## 2.5 Raccolta delle alghe

La raccolta delle alghe, che consiste nella rimozione di grandi quantità di acqua per aumentare la concentrazione della biomassa, può essere condotta in diversi modi (processi fisici, chimici, biologici) a seconda della dimensione delle alghe.

I principali metodi di raccolta sono la sedimentazione, la centrifugazione, la filtrazione e l'ultra-filtrazione, a volte accompagnata da una fase di flocculazione (con allume e cloruro ferrico) e/o flottazione.

La sedimentazione è di solito la prima fase della raccolta e utilizza la gravità per separare le alghe dall'acqua. La filtrazione è utilizzata per le microalghe più grandi, come la Coelastrum proboscideum e la S. platensis, ma non è adatta per le microalghe di piccole dimensioni come la Scenedesmus, la Dunaliella o la Chlorella, per le quali si utilizza la micro-filtrazione a membrana o l'ultra filtrazione (più costosa per la sostituzione delle membrane e il pompaggio).

La centrifugazione consente di *concentrare* rapidamente ogni tipo di microrganismo e, nonostante gli elevati costi operativi (0,6 \$/L) e il consumo energetico (3 kWh/L), è la tecnologia più utilizzata; il principale problema è però l'efficienza a causa della bassa concentrazione (1-4 g/L).

Dopo la deidratazione della biomassa prodotta segue la rottura delle cellule con metodi meccanici (frantumazione, omogeneizzazione, ultrasuoni) o non (solventi organici, shock osmotici, reazioni acide basiche o enzimatiche) per l'*estrazione* dell'olio. Anche questi metodi differiscono per l'efficienza e i costi.

Gli ultrasuoni o le micronde, attualmente allo studio, potrebbero incrementare l'efficienza di estrazione dell'olio e il rendimento del 50-500% [Amicarelli et al., 2012].

## 3. PBRC (Photobioreactor Continuous)

Il fotobioreattore oggetto di questa relazione è stato denominato Photobioreactor Continuous proprio per la natura continua del processo di produzione e di seguito verrà indicato con l'acronimo PBRC.

Il PBRC è essenzialmente costituito da un grande contenitore stagno (parallelepipedo) in cemento armato vibrato, molto simile ad una vasca biologica Imhoff ma, ovviamente, costituita in modo diverso.

Il volume della vasca, coibentata termicamente con l'esterno, è diviso trasversalmente in due macrosettori aventi la sola lunghezza differente tra loro.

Nel volume con maggiore lunghezza avverrà la coltivazione di microalghe, mentre nel volume di lunghezza inferiore avverrà la separazione gravimetrica della biomassa.

Quindi, esclusivamente nel settore di coltura, è presente un riscaldamento dal basso tramite pannelli radianti a pavimento.

Il settore di coltura è costituito da diversi pannelli, opportunamente disposti per creare un percorso sinuoso.

Questi pannelli sono costituiti da fogli di plastica con all'interno cavi di fibra ottica ad emissione laterale.

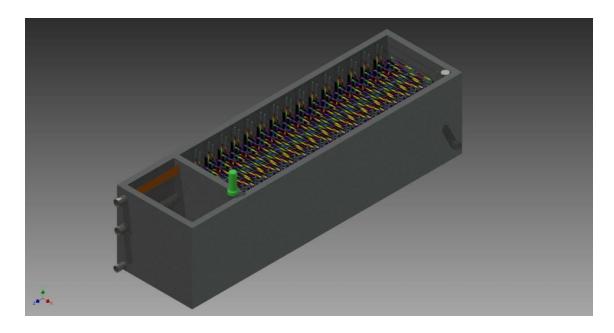



Figura 3 - PhotoBioReactor Continuos

#### 3.1 Funzionamento di massima

Dal punto di ingresso nel settore di coltura, la matrice contenente l'inoculo (iniziale o residuo dopo la raccolta) si distribuisce omogeneamente attraverso un tubo forato e chiuso in sommità. Il tubo così posto, grazie ai fori, di sezione complessiva minore della sezione del tubo, assicurerà una omogenea distribuzione del substrato, dovuta alla dinamica di "ritorno inverso" [Rossi, 2003] completata nel punto di uscita dal volume di coltura (in alto, mediante un tubo identico e capovolto).

Lungo il percorso sinuoso vengono forniti gli elementi nutritivi in maniera congrua alla fase di crescita microalgale, alla specie di microalga nonché al prodotto finale che si vuole ottenere:

NPK e CO<sub>2</sub> con distributori a pettine dotati di valvole per il dosaggio e la luce tramite i pannelli contenenti i cavi di fibra ottica.

In uscita dal volume di coltura, il substrato riceve un trattamento acustico ad alta frequenza (mediante sonotrodo cavitazionale), quindi viene condotto più in basso (a metà altezza), dove mediante tubo forato orizzontale, chiuso all'estremo opposto, si libera nel volume di raccolta. Da qui il substrato (con gli organismi unicellulari frazionati), subendo gli effetti gravimetrici in relativa assenza di turbative trasversali, procede separandosi in tre componenti, tutte estratte sul lato opposto.

La componente oleica (alto) e quella proteica (basso) sono estratte secondo portate correlate alla concentrazione del soluto relativo (rilevata da congrui densitometri).

La componente centrale, di concentrazione adeguata ad essere ripopolata allo stesso tenore durante il giro successivo, verrà reimmessa all'ingresso.

#### 3.2 Analisi di funzionamento del PBRC

Si vuole analizzare il comportamento del PBRC sia nella fase di coltura che nella fase di separazione delle microalghe, e mettere in evidenza come affronta alcune limitazioni delle tecnologie attualmente esistenti.

# 3.2.1 La fase di coltivazione

Per descrivere il funzionamento nella fase di crescita microalgale si farà riferimento ad alcuni parametri già affrontati in generale.

# Specie di alghe

In base alla specie di microalga varieranno gli input di crescita (temperatura, CO<sub>2</sub>, nutrienti, luce, pH).

L'impianto in esame ha le caratteristiche necessarie per variare agilmente le condizioni di crescita:

- conferire la temperatura ideale di crescita tramite pannelli radianti;
- dosare CO<sub>2</sub> e nutrienti in modo proporzionato alla diversa fase di crescita, permettendo anche un controllo del pH;
- illuminare la coltura variando le intensità luminose dove varierà la densità del fluido, il tutto indipendentemente dalle condizioni ambientali.

Tutto ciò permette al PBRC di poter ospitare una più vasta gamma di specie microalgali.

## CO2 e nutrienti

La CO<sub>2</sub> e i nutrienti (sali NPK) sono immessi con distributori a pettine dotati di valvole per il dosaggio, in modo da distribuire esattamente la giusta quantità nelle diverse fasi di crescita.

# Luce

I pannelli divisori contenuti nel macrovolume di coltura, oltre a creare un percorso sinuoso attorno cui la soluzione microalgale si muove, hanno il compito fondamentale di fungere da sorgente luminosa per svolgere la fotosintesi.

Questi sono disposti tra loro ad una distanza compresa tra i 25 e i 30 [cm] e, poiché illuminano da entrambe le direzioni, si ha un'attenuazione della luce in una lunghezza di solo 12.5 – 15 [cm], molto più bassa del limite massimo previsto nelle *open ponds*, ovvero 30 [cm] [Richmond, 2004].

Ognuno di questi pannelli è costituito essenzialmente da due fogli in materiale plastico trasparente (polietilene o simili), dentro cui è contenuto, sottovuoto, un cavo di fibra ottica *side glow* (ad emissione laterale). I due fogli sono termosaldati tra loro ai bordi e in tratti intermedi, e fissati all'interno della vasca con opportune guide.

L'intensità luminosa, che entra da un estremo del cavo, si disperderà lateralmente, quindi diminuirà gradualmente nel procedere verso l'estremità di uscita.

Per garantire una diffusione luminosa omogenea su tutta la superficie, il cavo è disposto, come si nota in Figura 3.1, in modo che ogni infinitesimo tratto di lunghezza del cavo è affiancato dal corrispondente tratto opposto per intensità.

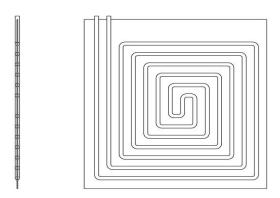



Figura 3.1 - Cavo in fibra ottica ad emissione laterale inserito tra due fogli di polietilene disposto in modo da garantire omogeneità di illuminazione

Ogni pannello avrà un suo illuminatore dedicato e pilotato da PLC (Programmable Logic Controller), per dosare frequenza ed intensità (potenza) nel progredire della serie dei pannelli, secondo i programmati ritmi di crescita microalgali.

I vantaggi nell'utilizzare questa tecnologia sono notevoli:

- la fibra ottica emana luce fredda in quanto non c'è trasporto di calore.

Questo evita l'utilizzo di sistemi di raffreddamento, come avviene nei fotobioreattori chiusi che utilizzano la luce solare [Mata et al., 2010]

- la fibra ottica non trasporta elettricità
- la fibra ottica emana luce pura poiché priva di raggi UVA ed Infrarossi.
- Ciò permette di conferire alle microalghe esclusivamente la porzione di spettro elettromagnetico necessario alla fotosintesi (PAR), come da Figura 1.3.
- selezionare lo spettro elettromagnetico, in modo da utilizzare una più piccola parte del PAR, quella che favorisce i processi fotosintetici nelle microalghe, ovvero le lunghezze d'onda che corrispondono ai colori rosso e blu/violetto [Choi et al., 2015].
- possibilità di sottoporre la coltura a intermittenze luce/buio con frequenze variabili, in modo da caratterizzare il prodotto finale dell'impianto, poiché a diverse frequenze di luce le cellule microalgali , vengono stressate e indotte a modificare la loro composizione [Choi et al., 2015].
- indipendenza dalle condizioni atmosferiche e dai cicli giorno/notte e stagionali

- conferire, in ogni fase di sviluppo della coltura microalgale, l'intensità luminosa necessaria a rendere massimo il tasso di crescita specifico μ, evitando il fenomeno della fotoinibizione (Figura 3.2) [Chisti, 2007].

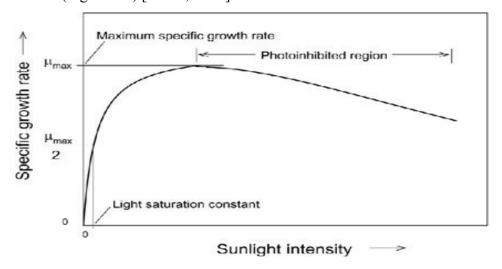



Figura 3.2 - Effetto della intensità della luce sul tasso di crescita specifico di microalghe

- è possibile integrare, nel sistema di illuminazione processi FER (fonti di energia rinnovabili) e concentratori ottici, come descritto da Chen et al. (2011) nella Tabella 3, per un importante risparmio energetico.

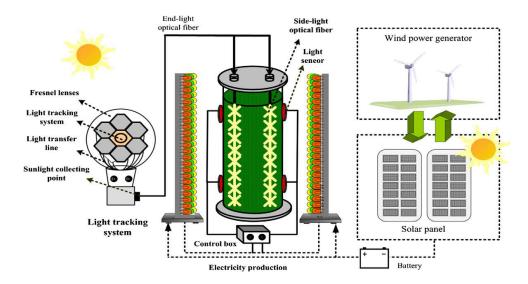

| Sorgente Luminosa                                                      | Caratteristiche                                                                                                                                                                                            | Stabilità<br>Operativa | Consumo di<br>Elettricità <sup>a</sup><br>(kW/h) |
|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------|
| Fonti di luce artificiale<br>convenzionali                             | Maggiore produttività della biomassa, maggiore<br>stabilità, grande zona di illuminazione, basso costo<br>di costruzione                                                                                   | Alta                   | 40.32                                            |
| LED                                                                    | Minor consumo di energia, generazione di calore<br>più basso, aspettativa di vita più lunga, tolleranza<br>maggiore di frequenza di commutazione on-off,<br>maggiore stabilità, basso costo di costruzione | Alta                   | 20.16                                            |
| Fibra ottica eccitata da<br>lampada a ioduri<br>metallici (OF-MH)      | Maggiore consumo di energia, minor superficie<br>necessaria, buon percorso della luce, luce<br>uniformemente distribuita, esigenze di spazio<br>minore, basso rischio di contaminazione                    | Moderata               | 36.0                                             |
| Fibra ottica eccitata da<br>energia solare (OF-<br>solar)              | Basso consumo di energia elettrica, buon percorso della luce, distribuzione uniforme della luce, minore spazio richiesto, basso rischio di contaminazione, costi inferiori                                 | Bassa                  | 1.0                                              |
| LED / OF-solar<br>combinato con<br>energia eolica /<br>pannelli solari | Nessun consumo di energia elettrica, buon<br>percorso della luce, distribuzione uniforme della<br>luce, spazio minore richiesto, basso rischio di<br>contaminazione                                        | Alta                   | 0                                                |

Tabella 3 - Caratteristiche e consumo di energia elettrica per diverse fonti di luce artificiale

<sup>&</sup>lt;sup>a</sup> Il consumo di energia elettrica delle sorgenti luminose è basato su un fotobioreattore da 40 L

La Figura 3.3 [Chen et al., 2011] mostra un esempio di come integrare processi FER nell'illuminazione di colture algali.

Per il PBRC, la differenza rispetto a questa configurazione, sarà che l'energia ricavata dalle FER verrà utilizzata per alimentare i LED che a loro volta ecciteranno la fibra side glow.



**Figura 3.3** - Descrizione schematica di un sistema fotobioreattore e fibra ottica eccitata da energia solare con una fonte di luce interna (la fibra ottica è eccitata dalla luce solare raccolta tramite un sistema di lenti) e una sorgente di luce multi-LED usando l'elettricità generata da pannelli solare e pale eoliche.

#### *Temperatura*

Nel PBRC la temperatura della coltura verrà mantenuta costantemente a valori ottimali tramite un sistema di pannelli radianti posto al di sotto del macrovolume di coltura. Tramite la conduttività termica del fluido, il calore si propagherà in tutta la coltura microalgale.

Nel macrovolume di separazione si deve favorire la sedimentazione, quindi non ci sarà riscaldamento.

#### <u>Miscelazione</u>

Negli impianti per la produzione di microalghe su larga scala, la miscelazione risulta fondamentale per esporre continuamente le cellule ai fotoni, che altrimenti si troverebbero in zone d'ombra, e per evitare la sedimentazione delle alghe [Amicarelli et al., 2012].

Poiché nel PBRC non ci sono zone d'ombra, occorrerà una minima miscelazione.

Questa sarà garantita tramite l'insufflaggio di CO<sub>2</sub> dal basso e grazie al trasporto di massa dovuto al gradiente termico dovuto al riscaldamento a pavimento:

dapprima il calore passa per conduzione dalla superficie alle particelle di fluido adiacenti, in modo tale che l'energia così trasmessa faccia aumentare l'energia interna e la temperatura delle particelle tali particelle vanno poi a muoversi verso una regione del fluido a temperatura minore e si mescolano con esso cedendo parte della propria energia ad altre particelle.

# 3.2.2 La fase di separazione e di raccolta

Tutte le lavorazioni a valle della coltura di microalghe coinvolgono una o più fasi di separazione solido-liquido. La biomassa può avere bisogno di essere separata dal terreno di coltura, o detriti cellulari rimossi a seguito di rottura delle cellule per il rilascio dei metaboliti di interesse. La biomassa è di solito raccolta per sedimentazione, centrifugazione o filtrazione, che talvolta richiedono una flocculazione supplementare [Richmond, 2004].

Gudin & Therpenier (1986) riportano che il recupero delle cellule microalgali rappresenta almeno il 20-30% del costo totale di produzione.

Il problema è dovuto ad una combinazione tra le piccole dimensioni delle microalghe (3-30  $\mu$ m) e la loro bassa concentrazione nel terreno di coltura (sotto 500 mg  $1^{-1}$  in alcune unità di produzione industriale).

Nel PBRC si utilizza la sedimentazione e la sospensione contando su una più alta densità cellulare.

Dopo la fase di accrescimento delle microalghe si procede, in modo continuo, alla rottura delle stesse (tramite ultrasuoni) e alla separazione nei tre prodotti finali: una componente oleica destinata al mercato energetico; una componente solida, proteica,

destinata invece al mercato farmaceutico, alimentare e/o cosmetico; una componente intermedia, che verrà utilizzata come inoculo iniziale per replicare il ciclo di coltivazione.

## Rottura delle cellule con ultrasuoni

Il meccanismo di distruzione cellulare deriva da taglio intensivo indotto da sonicazione della sospensione a frequenze sonore superiori a 20 kHz.

Un magnetostrittivo o un trasduttore piezoelettrico converte la corrente alternata di un oscillatore elettrico in onde meccaniche che vengono trasmesse alla sospensione attraverso una sonda metallica (di solito in titanio) vibrante della stessa frequenza dell'oscillatore. Le onde sonore creano tante micro bolle in vari siti di nucleazione in sospensione, che implodono durante il periodo di rarefazione delle onde sonore.

Questo fenomeno di cavitazione (formazione, crescita, e collasso delle bolle piene di vapore) produce intense onde d'urto locali, e sono generati intensi gradienti di taglio locali che portano le cellule a deformarsi oltre il limite di elasticità e di rottura [Richmond, 2004].

Gli ultrasuoni sono solitamente utilizzati come metodo di distruzione cellulare per l'estrazione di proteine da microalghe, poiché la temperatura e le sollecitazioni modificano la struttura di questi composti [Bermejo et al., 2001].

La disgregazione meccanica delle cellule è generalmente preferita per come questa offre un approccio che evita ulteriore contaminazione chimica di preparazione algale preservando maggior parte delle funzionalità del materiale all'interno della cellula [Chisti & Moo-Young, 1986].



Figura 3.4 - Esempio di un potente processore ad ultrasuoni [http://www.hielscher.com]

#### Sedimentazione e sospensione delle microalghe

A seguito della rottura delle microalghe, il flusso viene immesso, nel macrovolume di raccolta, orizzontalmente tramite un tubo forato posto ad una quota pari a metà di quella del pelo libero. Le cellule microalgali, già distrutte, procederanno molto lentamente verso la parete opposta. Durante questo percorso (Figura 3.5) le particelle con peso specifico maggiore sedimenteranno verso il basso per effetto della gravità. Al contrario, le cellule più leggere tenderanno a salire verso il pelo libero.

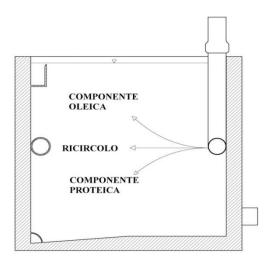



Figura 3.5 - vista in sezione del volume di raccolta

Il successo di rimozione dei solidi per decantazione di gravità dipende fortemente dalla densità delle particelle di microalghe. Edzwald (1993) ha trovato che le particelle di microalghe a bassa densità non si sedimentano bene e non sono separate con successo.

Per favorire questo processo si può utilizzare la flocculazione, già spesso utilizzata per aumentare l'efficienza di sedimentazione per gravità.

È un processo in cui le particelle disperse sono aggregate insieme per formare particelle più grandi per la sedimentazione. [Chen et al., 2011]

Esistono vari tipi di flocculazione: autoflocculazione, coagulazione chimica, con coagulanti inorganici, con flocculanti organici, flocculazione combinata e con processo elettrolitico.

Invece, per favorire la sospensione delle cellule più leggere (componente oleica delle microalghe) si può ricorrere alla flottazione.

La flottazione è un processo di separazione per gravità nel quale bolle d'aria o di gas si attaccano a particelle solide per poi portarli verso la superficie del liquido. Chen et al. (1998) notarono che la flottazione è più vantaggiosa ed efficace della sedimentazione per quanto riguarda la rimozione di microalghe.

La flottazione può catturare particelle con un diametro inferiore a 500 µm attraverso la collisione tra una bolla e una particella e la successiva aderenza della bolla e la particella [Yoon & Luttrell, 1989].

In base alle dimensioni delle bolle utilizzate nel processo di flottazione, le applicazioni possono essere suddivisi in flottazione dell'aria disciolta (DAF), flottazione dell'aria dispersa e flottazione elettrolitica.

Sono in corso studi per una separazione della biomassa microalgale tramite elettroflottazione con elettrodi a spirale in ferro e in alluminio.

L'elettroflottazione può essere considerata una tecnica efficace per la separazione di biomassa microalgale, ma è necessario del lavoro supplementare per esplorare i modi per evitare i crescenti livelli di metalli tossici nell'effluente scartato [Baierle et al., 2015].

# Raccolta delle microalghe separate

In seguito alla separazione attraverso il volume di raccolta, i tre prodotti microalgali verranno prelevati sulla parete opposta a quella di ingresso:

- la componente proteica con un tubo forato posto sul fondo del serbatoio; il pavimento è inclinato per permettere una più efficace raccolta.
- la componente oleica con un gradino a sbalzo posizionato a quota millimetrica sotto il pelo libero (Figura 3.6)
- l'inoculo con tubo forato posto ad una quota intermedia.

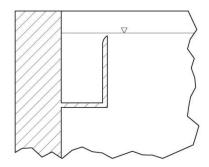



Figura 3.6 - dettaglio del gradino per la raccolta della componente oleica

### 3.3 Modello Matematico

Nel PBRC si ha un flusso continuo attraverso tubazioni di collegamento e canali artificiali a pelo libero nei macrovolumi di coltivazione e di raccolta.

Proprio in queste due parti dell'impianto, poiché la pendenza del pelo libero coincide con quella del fondo, possiamo considerare un *moto uniforme* [Citrini & Noseda, 1987]. Inoltre il fluido trattato è incomprimibile e in moto permanente quindi, facendo riferimento all'equazione di continuità si ha:

$$Av = cost.$$

dove A è l'area e v è la velocità media definita come rapporto tra la portata e l'area:

$$v = \frac{Q}{A} \quad [m/s]$$

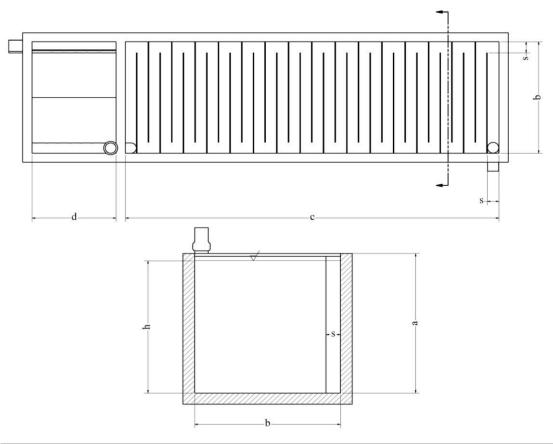



Figura 3.7 - vista dall'alto e in sezione del PBRC con quote parametriche

Con riferimento alla Figura 3.7, nel macrovolume di coltura avremo una portata volumetrica definita come:

$$Q = v \cdot A \left[ m^3/h \right]$$

dove  $A = s \cdot h$  [ $m^2$ ] è la sezione di passaggio del fluido; s = distanza tra i setti intercalari; h = altezza pelo libero.

La velocità media tra i setti sarà quindi:

$$v = \frac{Q}{s \cdot h} \ [m/h]$$

È utile calcolare il tempo che impiega il fluido per percorrere completamente il percorso sinuoso, perché coincide con il tempo a disposizione della biomassa algale per svilupparsi:

$$t = \frac{L}{v} \quad [h]$$

dove L è la lunghezza media del percorso sinuoso di crescita e definita come:

$$L = (b-s)(z-2) + s(z-1) + (2b-s)$$
 [m]

con

b = larghezza della vasca

z = c/s = numero di setti intercalari

c = lunghezza della vasca nella fase di crescita

A parità di dimensioni dell'impianto e conferendo alla coltura la giusta quantità di luce, nutrienti e temperatura in modo da rendere massimo il tasso specifico di crescita  $\mu$  [Sandnes et al., 2005], già definito come:

$$\mu = \frac{\ln \frac{N_f}{N_i}}{t_f - t_i} \qquad [h^{-1}]$$

si potrà intervenire esclusivamente sulla portata volumetrica Q per variare il tempo di permanenza della biomassa nella vasca di coltivazione ed ottenere la concentrazione finale di microalghe prestabilita. Nel macrovolume di raccolta, facendo riferimento alle quote della Figura 3.7 si ha:

$$v = \frac{Q}{d \cdot h} \quad [m/h]$$

dove d è la larghezza del macrovolume di raccolta, e

$$t = \frac{b}{v} \quad [h]$$

Osserviamo che, per la continuità della portata, la velocità media del flusso nella fase di separazione sarà di molto inferiore a quella nella fase di crescita.

Introduciamo la portata massica di microalghe definita come:

$$\dot{m} = \rho \cdot Q \ [kg/h]$$

dove  $\rho$  è la concentrazione di microalghe nel fluido in [g/l] e Q è la portata del fluido in [m<sup>3</sup>/h].

Mentre la portata Q resterà costante in tutte le sezioni dell'impianto, la concentrazione  $\rho$  aumenterà nel settore di coltivazione: da una concentrazione iniziale pari a quella dell'inoculo, che chiameremo  $\rho_i$ , ad una concentrazione finale pari a quella che verrà trattata dal processo ad ultrasuoni, che chiameremo  $\rho_f$ .

Conseguentemente varierà la portata massica di microalghe e avremo:

$$\dot{m}_{inoculo} = \rho_i \cdot Q \ [kg/h]$$

$$\dot{m}_{tot} = \rho_f \cdot Q \ [kg/h]$$

Dopo la rottura delle cellule mediante ultrasuoni e la separazione delle stesse nelle tre componenti (proteico, oleico, ricircolo), la portata volumetrica Q si dividerà nelle tre portate volumetriche di uscita tale che:

$$Q = Q_{proteico} + Q_{oleico} + Q_{ricircolo}$$

con relative portate massiche pari a:

$$\dot{m}_{proteico} = 
ho_{proteico} \cdot Q_{proteico}$$
  $\dot{m}_{oleico} = 
ho_{oleico} \cdot Q_{oleico}$ 

$$\dot{m}_{ricircolo} = \rho_{ricircolo} \cdot Q_{ricircolo}$$

Poiché la portata volumetrica di ricircolo è inferiore a quella totale dell'impianto, la densità di ricircolo sarà maggiore di quella iniziale dell'inoculo

$$Q_{ricircolo} < Q$$

$$\rho_{ricircolo} > \rho_i$$

più precisamente si dovrà avere:

$$\dot{m}_{ricircolo} = \dot{m}_{inoculo}$$

$$\rho_{ricircolo} \cdot Q_{ricircolo} = \rho_i \cdot Q$$

$$\rho_{ricircolo} = \rho_i \frac{Q}{Q_{ricircolo}} \quad [g/l]$$

Poiché la portata volumetrica di ricircolo è inferiore a quella che attraversa l'impianto, bisognerà integrarla con una portata di acqua, Q<sub>reintegro</sub>, pari a:

$$Q_{reintegro} = Q - Q_{ricircolo}$$
  $[m^3/h]$ 

La portata massica di produzione (utile) sarà:

$$\dot{m}_{produzione} = \dot{m}_{proteico} + \dot{m}_{oleico} = \dot{m}_{tot} - \dot{m}_{ricircolo} = Q \Big( \rho_f - \rho_i \Big) \qquad [kg/h]$$

### 3.4 Innovatività e vantaggi del PBRC

Molti degli svantaggi presenti negli impianti open ponds sono già stati superati dai fotobioreattori chiusi che, però, a loro volta presentano altri inconvenienti risolti in modo molto oneroso in termini economici.

Il PBRC è un impianto chiuso e, allo stesso modo degli attuali fotobioreattori chiusi, presenta migliorie rispetto ai sistemi aperti: miglior controllo delle condizioni e dei parametri di crescita della coltura, maggiore densità delle microalghe, maggiore produttività volumetrica, riduzione della contaminazione da parte di altri microrganismi, migliore efficienza fotosintetica, minore spazio occupato.

L'obiettivo del PBRC, quindi, è quello di migliorare le caratteristiche dei fotobioreattori chiusi, poiché questi, nonostante i notevoli vantaggi rispetto agli impianti open ponds,

sono impiegati, per lo più, per colture da laboratorio e per la creazione di inoculi da destinare agli impianti aperti.

Infatti, nel 2010, il 98% della produzione mondiale di alghe (circa 10.000 t) era prodotta con le vasche [Thurmond, 2011].

Uno dei grossi problemi dei fotobioreattori è il surriscaldamento della coltura dovuta alle radiazioni solari. Per ovviare a questo problema, si utilizzano serre e sistemi di raffreddamento con acqua nebulizzata, con un notevole aumento dei costi d'installazione e di gestione.

Nel PBRC, questo inconveniente non si presenta, poiché il sistema di illuminazione non trasmette calore.

Altro svantaggio dei fotobioreattori è l'accumulo indesiderato di ossigeno:

con una elevata irradiazione la quantità di ossigeno prodotta in un fotobioreattore tubolare è pari a circa 10 [g/m³/min]. Un livello di ossigeno maggiore del limite di saturazione dell'aria inibisce la fotosintesi e, combinato con una intensa irradiazione, può danneggiare le cellule delle alghe.

Pertanto i fotobioreattori devono essere periodicamente puliti attraverso il passaggio della biomassa in una colonna di degassazione [Chisti, 2007].

Nella Tabella 3.1 si mette a diretto confronto le due tecnologie attualmente impiegate per la produzione di microalghe [Mata et al., 2010; Amicarelli et al., 2012] e il fotobioreattore oggetto di questa relazione.

| VARIABILI<br>OPERATIVE                | OPEN PONDS                                                                       | FOTOBIOREATTORE                                                                                                 | PBRC                                          |
|---------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Spazio occupato                       | Alto                                                                             | Basso                                                                                                           | Basso                                         |
| Perdita di H <sub>2</sub> 0           | <b>Molto alta</b> Può determinare la precipitazione di sali                      | Bassa                                                                                                           | Bassa                                         |
| Perdita di CO <sub>2</sub>            | Alta Dipende dalla profondità delle vasche                                       | Bassa                                                                                                           | Bassa                                         |
| Consumo di CO <sub>2</sub>            | Medio                                                                            | Medio                                                                                                           | Medio                                         |
| Concentrazione<br>dell'O <sub>2</sub> | Generalmente bassa Il gas è rilasciato liberamente dalla superficie delle vasche | Alta L'ossigeno deve essere rimosso causa inibizione della reazione di fotosintesi e problemi di fotossidazione | Bassa                                         |
| Efficienza<br>fotosintetica           | Bassa                                                                            | Alta                                                                                                            | Molto Alta Spettro radiativo mirato           |
| Temperatura                           | <b>Molto variabile</b> E' in funzione della profondità delle vasche              | Alta Spesso è richiesto un sistema accessorio di raffreddamento                                                 | Controllata Con pannelli radianti a pavimento |

| Rimescolamento<br>alghe                          | <b>Basso</b><br>Si utilizzano pale rotanti                                                       | Alto Avviene mediante l'immissione di gas (miscela aria e CO <sub>2</sub> ) | Basso Servono minori miscelazioni poiché non ci sono zone d'ombra                                      |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Pulizia degli<br>impianti                        | Non richiesta                                                                                    | Richiesta                                                                   | Richiesta Più facile da effettuare rispetto ai fotobioreattori                                         |
| Rischio di<br>contaminazione                     | Elevato Dipende dalle caratteristiche chimico- fisiche del mezzo di coltura                      | Basso                                                                       | Basso                                                                                                  |
| Qualità della<br>biomassa algale                 | Variabile                                                                                        | Riproducibile                                                               | Riproducibile                                                                                          |
| Concentrazione<br>media della<br>biomassa algale | <b>Bassa</b><br>0.15 - 0.5 [g/l]                                                                 | <b>Alta</b> 5 - 8 [g/l]                                                     | <b>Molto Alta</b><br>Si punta ai 20 [g/l]                                                              |
| Flessibilità di<br>produzione                    | Bassa Solo un numero limitato di specie, difficoltà nel modificare le condizioni chimico-fisiche | Alta Possibilità di variare le condizioni chimico-fisiche                   | Alta Possibilità di variare le condizioni chimico- fisiche e i cicli di riproduzione                   |
| Dipendenza dalle<br>condizioni<br>atmosferiche   | Alta                                                                                             | Media                                                                       | Bassa Luce artificiale e temperatura controllata Possibilità di sfruttare luce naturale indirettamente |
| Tempo di avvio                                   | 6-8 settimane                                                                                    | 1-4 settimane                                                               | < 1 settimana                                                                                          |
| Produttività                                     | Media Dipende dalle condizioni ambientali e dalle caratteristiche tecniche dell'impianto         | Alta                                                                        | Alta                                                                                                   |
| Costi di raccolta                                | Alti<br>Dipendono dalla specie                                                                   | Bassi Sono dovuti all'elevata concentrazione                                | Molto Bassi Elevata concentrazione Separazione e raccolta in coda alla fase di crescita                |

Tabella 3.1 - Confronto tra open ponds, fotobioreattori e PBRC

Un aspetto innovativo molto importante del PBRC è la separazione e la raccolta in coda alla coltivazione che, unita all'elevata concentrazione di biomassa, si traduce in una notevole riduzione dei costi di raccolta rispetto alle altre tecnologie; per di più i prodotti in uscita sono già selezionati in due componenti distinte.

### 3.5 Analisi di redditività

Per effettuare un'analisi di redditività dell'impianto in esame si fa riferimento ad una taglia standard del PBRC.

Con riferimento alle quote parametriche di Figura 3.7 adottiamo i seguenti dati:

 $a = 2.5 \lceil m \rceil$ 

b = 2.5 [m]

c = 8 [m]

d = 2 [m]

h = 2.4 [m]

s = 0.25 [m]

z = c/s = 32

L = 80 [m]

$$A = s h = 0.6 [m^2]$$

Dividiamo idealmente i 32 setti in 4 gruppi da 8 e supponiamo che in ciascuno dei quattro gruppi avviene un raddoppio di concentrazione di biomassa.

Con riferimento alle formule contenute nel modello matematico, si assume una portata Q pari a 2 [m³/h], e quindi una velocità media v di 3.333 [m/h] con un tempo di percorrenza del settore di coltura pari a 24 [h].

Prendiamo in esame la specie microalgale *Chlorella vulgaris* BEIJ., che alla temperatura di 35-37 [°C] e ad un pH compreso tra 6 e 7.5, ha un massimo tasso specifico di crescita  $\mu_{max} = 0.18 \, [h^{-1}]$ , [Doucha & Lívanský, 2012].

Dovendo avere un raddoppio di densità ogni 6 ore, si deve avere un tasso specifico di crescita pari a

$$\mu = \frac{\ln \frac{N_f}{N_i}}{t_f - t_i} = \frac{\ln 2}{6} = 0.1155 [h^{-1}]$$

largamente contenuto in quello massimo della microalga presa in esame.

Partendo da una concentrazione iniziale di 1.34 [g/l] (inoculo di partenza ρi) otteniamo una densità di biomassa finale di 21.34 [g/l].

Se ipotizziamo una portata di ricircolo pari a Qricircolo = Q/3 avremo una portata massica di produzione di microalghe pari a 40 [kg/h] ovvero 960 [kg/giorno].

Stimando un utilizzo di produzione di 200 giorni all'anno, cioè al netto del fermo per manutenzioni predittive, riavvii, pulizia o per cambio produzioni, si ha una produzione annuale di biomassa pari a 192000 [kg]

Nella Tabella 3.2, si vuole mettere a confronto la produttività dei sistemi allo stato dell'arte [Chisti, 2007] con quella del PBRC nello standard appena considerato.

| VARIABILE                            | UNITA'                             | RACEWAY<br>PONDS | FOTOBIOREATTORI | PBRC*  |
|--------------------------------------|------------------------------------|------------------|-----------------|--------|
| Produzione<br>annuale di<br>biomassa | kg y <sup>-1</sup>                 | 100000           | 100000          | 192000 |
| Produttività<br>volumetrica          | kg m <sup>-3</sup> d <sup>-1</sup> | 0.117            | 1.535           | 8.42   |
| Produttività areale                  | kg m <sup>-2</sup> d <sup>-1</sup> | 0.035            | 0.048           | 21.04  |
| Concentrazione<br>Biomassa           | kg m <sup>-3</sup>                 | 0.14             | 4.00            | 21.34  |
| Velocità di<br>diluizione            | d <sup>-1</sup>                    | 0.250            | 0.384           | 0.395  |
| Area<br>Necessaria                   | $m^2$                              | 7828             | 5681            | 25     |

Tabella 3.2 - Confronto di produttività tra raceway ponds, fotobioreattori e PBRC \* dati teorici

I costi capitali del PBRC sono relativamente bassi: la struttura principale è di semplice geometria e di materiale poco oneroso (cemento armato vibrato).

Il valore del PBRC è stimabile con un CapEx di 150.000 €/cadauno.

| Costi              | Open Ponds                                                          | Fotobioreattori                                                                                                                                   | PBRC                                                                                                        |
|--------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Costi<br>capitali  | 375.26 M\$                                                          | 970.07 M\$                                                                                                                                        | Circa 150000€/unità                                                                                         |
| Costi<br>operativi | 42.65 M\$ Soprattutto energia elettrica e immisione CO <sub>2</sub> | 62.80 M\$ Immissione della CO <sub>2</sub> , controllo pH, rimozione O <sub>2</sub> , raffreddamento, pulizia superfici bioreattore, mantenimento | Variabili Soprattutto energia elettrica. Dipenderà dall'utilizzo di FER e dalla bonifica di CO <sub>2</sub> |

Tabella 3.3 - Confronto dei costi tra open ponds, fotobioreattori [Richardson et al., 2012] e PBRC

I costi di esercizio dipenderanno molto dall'eventualità di riciclaggio di gas di scarico,in modo da avere una fonte di CO<sub>2</sub> gratuita se non addirittura unita ad un compenso per lo smaltimento, e dall'utilizzo di FER, così da far decrescere notevolmente i costi per l'alimentazione delle tante sorgenti luminose.

## CONCLUSIONI

Nel fotobioreattore oggetto di questa relazione si unisce la semplicità strutturale delle open ponds e l'elevata produttività dei fotobioreattori chiusi.

Utilizzando una superficie poco estesa, è in grado sia di produrre un elevata quantità di biomassa, sia di separare la stessa in diverse componenti da destinare a mercati differenti.

Come sostengono Amicarelli et al. (2012), il costo ancora elevato del biodiesel da alghe potrebbe essere sostanzialmente ridotto se si organizzasse una produzione integrata di merci diverse da destinare sia al mercato dei biocombustibili che ad altri mercati emergenti.

Il PBRC è dimensionato in modo da poter valorizzare sia la parte oleica delle microalghe, sia quella proteica.

Infatti, ad esempio, se si avvierà una produzione destinata prettamente al mercato farmaceutico, si avrà una componente oleica di "scarto" che in realtà sarà utilizzata per scopi energetici.

I costi capitali stimati dell'impianto sono molto contenuti (circa 150 000 €), mentre quelli operativi (soprattutto energia elettrica per l'illuminamento) potrebbero essere troppo elevati per giustificare una produzione concorrenziale con le altre tecnologie.

Sarà fondamentale l'integrazione dell'impianto con fonti energetiche rinnovabili.

Inoltre, allo scopo di ridurre drasticamente i costi di approvvigionamento di carbonio e di nutrienti, e date le contenute dimensioni rispetto agli impianti all'attuale stato dell'arte, sarà possibile posizionare il PBRC in prossimità di impianti di generazione elettrica, al fine di recuperare i gas di scarico da utilizzare come fonte di CO<sub>2</sub>, ed in prossimità di impianti per la produzione di biogas, per utilizzare i sali NPK di scarto quali nutrimenti per la coltura microalgale o addirittura per inviare a tale impianto della biomassa algale "scartata" da utilizzare per la digestione anaerobica.

Sono presenti le premesse affinché il PhotoBioReactors Continuous possa essere competitivo con gli attuali sistemi di produzione di microalghe.

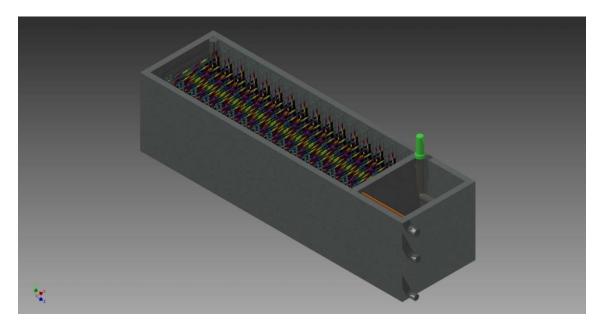
In questa relazione si è fatta un'analisi generale e un dimensionamento di massima: prima che il PBRC possa essere effettivamente realizzato, saranno strettamente necessari approfondimenti teorici e prove sperimentali.

### **BIBLIOGRAFIA**

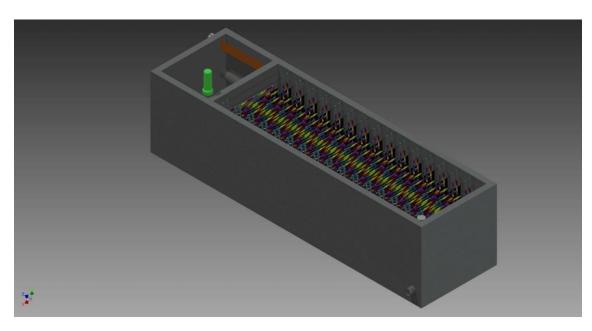
- Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM.; (2012) Microalgae and wastewater treatment. Saudi J Biol Sci
- Amicarelli Vera, Paiano Annarita, Lobefaro Leonarda; (2012); Le microalghe nel settore dei biocombustibili. Sviluppo e sostenibilità; Energia, ambiente e innovazione
- Baierle Felipe, John Danielle K., Souza Maiara P., Bjerk Thiago R., Moraes Maria S.A., Hoeltz Michele, Rohlfes Ana L.B., Camargo Maria Emilia, Corbellini Valeriano A., Schneider Rosana C.S.; (2015); Biomass from microalgae separation by electroflotation with iron and aluminum spiral electrodes; *Chemical Engineering Journal* 267; 274–281
- Benemann J.; (1997); CO<sub>2</sub> mitigation with microalgal systems; *Energy Convers Manag*
- Bermejo, R., Talavera, E.M. & Alvarez-Pez J.M.; (2001); Chromatographic purification and characterization of β-phycoerythrin from *Porphyridium cruentum*. Semipreparative HPLC separation and characterization of its subunits.; *J. Chromatogr. A*, 917
- Chen Chun-Yen, Yeh Kuei-Ling, Aisyah Rifka, Lee Duu-Jong, Chang Jo-Shu;
   (2011); Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review; *Bioresource Technology* 102; 71–81
- Chen, Y.M., Liu, J.C., Ju, Y.H.; (1998); Flotation removal of algae from water. *Colloid. Surface. B* 12
- Chisti Y. (2007); Biodiesel from microalgae, Biotechnology Advances

- Chisti, Y., Moo-Young, M., (1986); Disruption of microbial cells for intracellular products. *Enzyme Microbiol. Technol.* 8
- Chiu SY, Kao CY, Chen CH, Kuan TC, Ong SC, Lin CS.; (2008); Reduction of CO<sub>2</sub> by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor; *Bioresour Technol*
- Chiu SY, Tsai MT, Kao CY, Ong SC, Lin CS.; (2009); The air-lift photobioreactors with flow patterning for high-density cultures of microalgae and carbon dioxide removal. *Eng Life Sci*
- Choi Yong-Keun, Kumaran Rangarajulu Senthil, Jeon Hyeon Jin, Song Hak-Jin, Yang Yung-Hun, Lee Sang Hyun, Song Kyung-Guen, Kim Kwang Jin, Singh Vijay, Kim Hyung Joo; (2015); LED light stress induced biomass and fatty acid production in microalgal biosystem, Acutodesmus obliquus; Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 145; 245 – 253
- Christenson L, Sims R.; (2011); Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts; *Biotechnol Adv*
- Citrini D., Noseda G.; (1987); *Idraulica*, seconda edizione, Casa Editrice Ambrosiana
- De Pauw N, Morales J, Persoone G.; (1984); Mass culture of microalgae in aquaculture systems: progress and constraints. *Hydrobiologia*
- de-Bashan LE, Bashan Y.; (2010); Immobilized microalgae for removing pollutants: review of practical aspects. *Bioresour Technol*

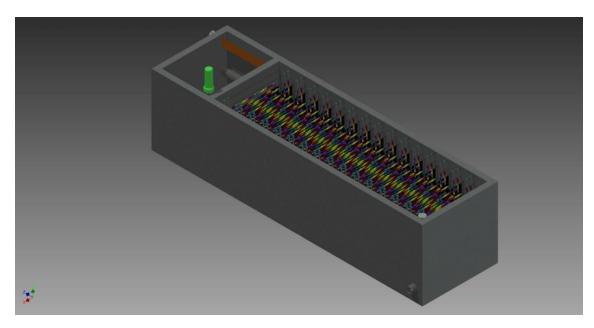
- Dinh L.T.T., Guo Y., Mannan M.S.; (2009); Sustainability evaluation of biodiesel production using multicriteria decision-making; Environmental Progress & Sustainable Energy
- Doucha Jiři & Lívanský K., (2012); Production of high-density Chlorella culture grown in fermenters; J Appl Phycol 24; 35–43
- Edzwald, J.K., (1993); Algae, bubbles, coagulants, and dissolved air flotation. *Water Sci. Technol.* 27, 67–81
- Gattullo CE, Bährs H, Steinberg CE, Loffredo E.; (2012); Removal of bisphenol
   A by the freshwater green alga Monoraphidium braunii and the role of natural organic matter. Sci Total Environ
- Giuliano Giovanni, Demurtas Olivia, Ferrante Paola; (2013); Le microalghe come bio-fabbriche per composti ad elevato valore aggiunto; Biotecnologie per lo sviluppo sostenibile
- Greaves R, Petkovich MCON, Miyazawa TCON, Albertini B; (2012); Vitamin
  A and Carotenoids: Chemistry, Analysis, Function and Effects; Royal Society of
  Chemistry
- Gudin C. & Therpenier C.; (1986); Bioconversion of solar energy into organic chemicals by microalgae; *Adv. Biotechnol. Proc.* 6
- http://www.ecotecgroup.com/it/centro-ricerche/microalghe/
- <a href="http://www.hielscher.com">http://www.hielscher.com</a>
- Kadam KL. (1997); Power plant flue gas as a source of CO<sub>2</sub> for microalgae cultivation: economic impact of different process options. Energy Convers Manag


- Kadam KL. (2001); Microalgae production from power plant flue gas: environmental implications on a life cycle basis. NREL/TP-510-29417.
   Colorado, USA: National Renewable Energy Laboratory
- Khan Z, Bhadouria P, Bisen PS; (2005); Nutritional and therapeutic potential of Spirulina; *Current pharmaceutical biotechnology*
- Maity Jyoti Prakash, Bundschuh Jochen, Chen Chien-Yen, Bhattacharya Prosun;
   (2014); Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives A mini review; *Energy* 78; 104 113
- Markou G, Georgakakis D.; (2011); Cultivation of filamentous cyanobacteria (bluegreen algae) in agro-industrial wastes and wastewaters: a review;
   ApplEnergy
- Mata Teresa M., Martins Antonio A., Caetano Nidia. S.; (2010); Microalgae for biodiesel production and other applications: A review; Renewable and Sustainable Energy Reviews 14; 217–232
- Molina Grima E., Acién Fernández F.G., García Camacho F., Chisti Yusuf;
   (1999); Photobioreactors: light regime, mass transfer, and scaleup; *Journal of Biotechnology*
- Molina Grima E., García Camacho F., Sánchez Pérez J.A., Fernández Sevilla J.,
   Acién Fernández F.G., Contreras Gómez A.; (1994); A mathematical model of microalgal growth in light limited chemostat cultures; J. Chem. Technol. Biotechnol. 61

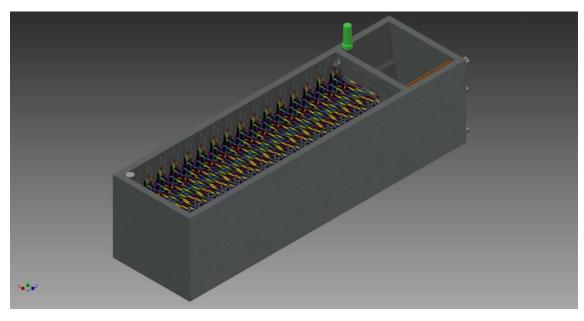
- Mulbry W, Kangas P, Kondrada S.; (2010); Toward scrubbing the bay: nutrient removal using small algal turf scrubbers on Chesapeake Bay tributaries. *Ecol Eng*
- Muñoz R, Köllner C, Guieysse B.; (2009); Biofilm photobioreactors for the treatment of industrial wastewaters; *J Hazard Mater*
- Naylor RL, Hardy RW, Bureau DP, Chiu A, Elliott M, Farrell AP, Forster I, Gatlin DM, Goldburg RJ, Hua K, Nichols PD; (2009); Feeding aquaculture in an era of finite resources; *Proc Natl Acad Sci U S A*
- Norsker NH, Barbosa MJ, Vermue MH, Wijffels RH; (2011); Microalgal production-a close look at the economics. *Biotechnol Adv*
- Olvera-Novoa MA, Dominguez-Cen LJ, Olivera-Castillo L, Martinez-Palacios CA; (2008); Effect of the use of the microalga Spirulina maxima as fish meal replacement in diets for tilapia, Oreochromis mossambicus (Peters), fry. Aquaculture Research
- Park JBK, Craggs RJ, Shilton AN.; (2011); Wastewater treatment high rate algal ponds for biofuel production. *Bioresour Technol*
- Pittman JK, Deana AP, Osundeko O.; (2010); The potential of sustainable algal biofuel production using wastewater resources; *Bioresour Technol*
- Richardson James W., Johnson Myriah D., Outlaw Joe L.; (2012); Economic comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the Southwest; *Algal Research* 1, 93–100
- Richmond A.; (2004); Handbook of microalgal culture: biotechnology and applied phycology; Blackwell Science Ltd


- Rossi Nicola, (2003), Manuale del Termotecnico
- Sandnes J.M., Källqvist T., Wenner D., Gislerød H.R.; (2005); Combined influence of light and temperature on growth rates of *Nannochloropsis oceanica*: linking cellular responses to large-scale biomass production; *J Appl Phycol*
- Simopoulos AP; (2008); The omega-6/omega-3 fatty acid ratio, genetic variation, and cardiovascular disease; *Asia Pac J Clin Nutr*
- Simopoulos AP; (2011); Evolutionary aspects of diet: the omega-6/omega-3 ratio and the brain. *Mol Neurobiol*
- Smith V.H., Sturm B.S.M., deNoyelles F.J., Billings S.A.; (2009); The ecology of algal biodiesel production; *Trends in Ecology and Evolution*
- Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K,
   Naidu R.; (2013); Mixotrophic cyanobacteria and microalgae as distinctive
   biological agents for organic pollutant degradation; *Environ Int*
- Thurmond W., (2011); "Algae 2020: Vol. 2: Global Biofuels, Drop-In Fuels, Biochems Market and Forecasts", *Emerging Markets Online*, Houston (US)
- Williams JA. (2002); Keys to Bioreactor selection; CEP Magazine
- Xu L., Weathers P.J., Xiong X.R., Liu C.Z.; (2009); Microalgal bioreactors: challenges and opportunities. *Eng. Life Sci.*
- Yoon, R.H., Luttrell, G.H.; (1989); The effect of bubble size on fine particle flotation. *Miner. Process. Extract. Metal. Rev.: An Int. J.* 5;]

# Ringrazio il Professor Stefano Farnè e il Dottor Vito Lavanga per l'aiuto nella stesura di questa relazione

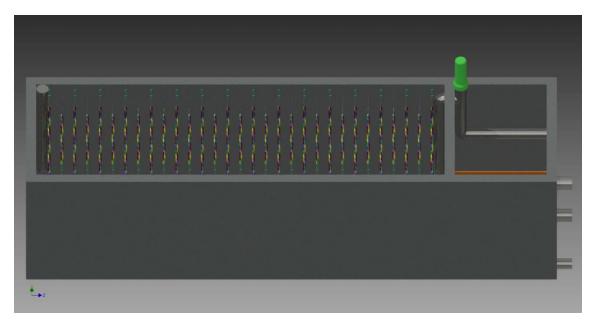

# RENDERING IMMAGINE



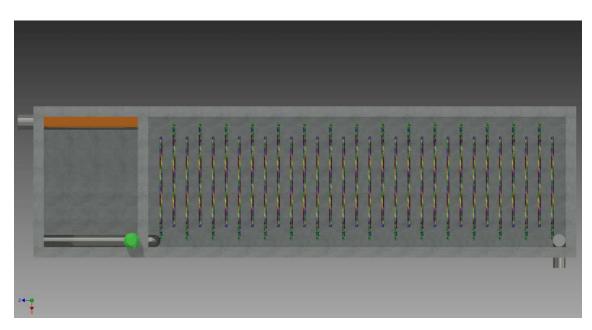

**VISTA ORTOGONALE 1** 



**VISTA ORTOGONALE 2** 

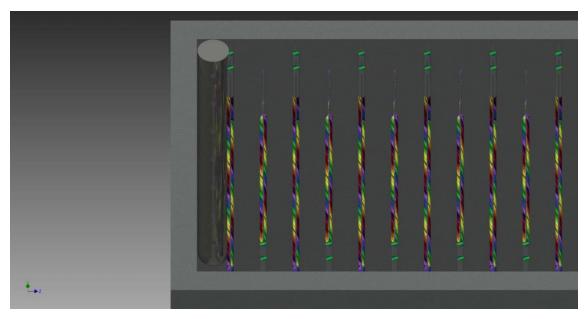



**VISTA ORTOGONALE 3** 

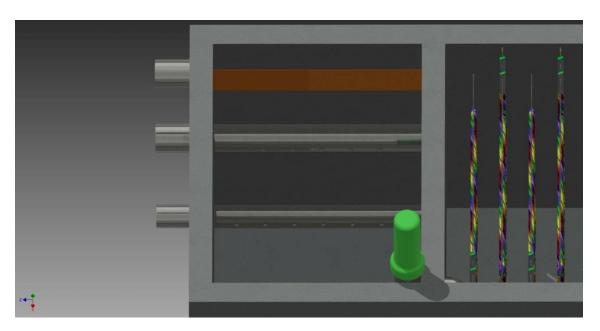



**VISTA ORTOGONALE 4** 

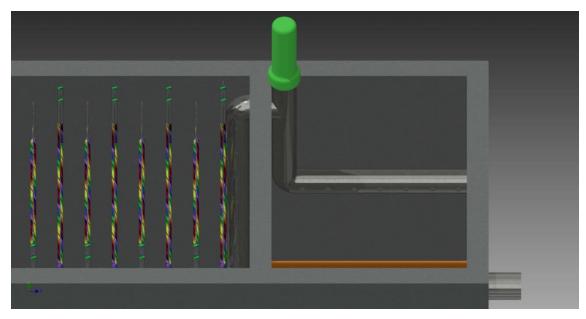
57



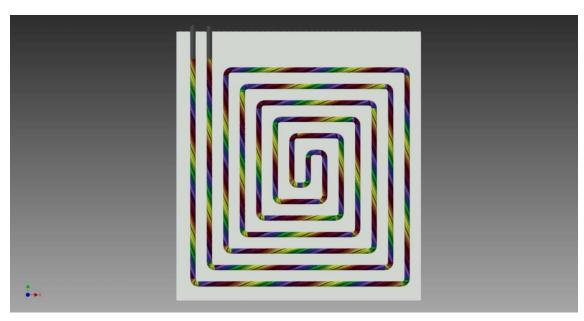

VISTA LATERALE




VISTA DALL'ALTO


58




DETTAGLIO TUBO D'INGRESSO



**DETTAGLIO USCITE** 



DETTAGLIO SONOTRODO CAVITAZIONALE



FIBRA OTTICA SIDE GLOW TRA DUE FOGLI DI POLIETILENE



## Innovative Plant for the Production of Microalgaes

#### Farné Stefano

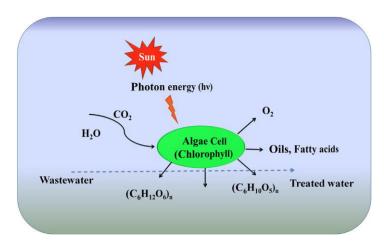
Department of Industrial, Electrical, Computer and Biomedical Engineering, University of Pavia, Italy.

DOI: To be assigned



Article Received: 09 June 2020

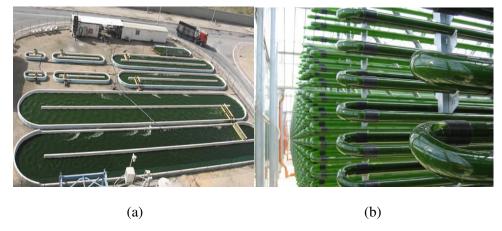
Article Accepted: 26 August 2020


Article Published: 30 September 2020

#### **ABSTRACT**

It is strongly felt the need to replace fossil fuels with other renewable and more compatible with the environment. The spinneret of algal crops is producing different solutions ("open ponds", tubular, bioreactors in greenhouses, etc.). The aim is to obtain concentrations of dry substance such as to justify the high costs of extraction. Another limitation suffered by the actual plants, derives from the choice to move the algal mass (process characterized by a high energy consumption), with actions necessary to keep it in suspension as well as to move it, to exchange its positioning in order to bring it to be conditioned by the light (exhausting its effectiveness after the first 0.2-0.3 m of algal mass depth, or even less if thicker and when it would need more light for its exponential growth). In particular, it is not possible to bring a specific radiation spectrum, in a pervasive and deep way, with a drastic cost reduction for the mechanical movement of the culture medium. A limitation derives also from the possibility of biological and chemical contamination from the environment, because the algal mass is in a large contact with the environment itself (e.g. the "open ponds" situations) and it is heavily exposed to the prevalent thermal cycles (often not suitable to the processes of growth) inside it. Some problems are often encountered even in the phase of collection and selection of the algal mass to be forwarded to the following processes, that proceeds through the massive processing of large volumes (by filtration and concentration) that, due to previous limitations (contamination and uncertain conditions of growth), remain at low concentrations. The purpose of this article is to present the PBRC (Photo Bio Reactor Continuous) plant, subject of an Italian patent [Lavanga and Farné, 2014], for the cultivation of microalgae, from which to extract an oleic fraction, which can be destined for production of biofuels, and a protein fraction, which can be destined for use in the chemical, agri-food, pharmaceutica

#### 1. Introduction


Microalgae (fig. 1) are photoautotrophic, prokaryotic or eukaryotic single-celled organisms, which have numerous advantages, including fast growth [Mata et al., 2010], if light and simple nutrients are available and the ability to synthesize and accumulate lipids, proteins and carbohydrates.



**Fig.1** Microalgae use light energy (e.g. the sun) for the production of chemical energy through photosynthesis during the natural growth cycle

Microalgae can be grown in open systems (Open Ponds), such as lakes, ponds, or closed in culture systems called photobioreactors (reactors in which phototrophic organisms - microbial, algal or plant cells - are grown or used to carry out a photobiological reaction) [Mata et al., 2010], as shown in fig.2. The choice of the culture system is based on several factors: the culture medium, the amount of water, nutrients, temperature, energy consumption and the final product that is intended to be obtained.





**Fig.2** Examples of cultivation system: (a) open system (raceway ponds) and (b) closed system (tubular photobioreactor)

### 1.1 Open Ponds

Currently the cultivation of microalgae at industrial level takes place in production systems based on open ponds. The main reason is the cost-effectiveness of the system, due to the simplicity of management and linked to both low construction and operating costs.

The most widely used at industrial level are of two types: the "inclined" systems, where mixing is given by gravity and pumps, and the "circuit" tanks (raceway pond) where the mass completes a closed circuit moved by rotating blades. The second type, schematically represented in fig. 3, is certainly the most common.

The simplest model is represented by a tank of variable thickness (from 0.15 m to 0.30 m), covered by a plastic sheet that does not allow losses of the crop through the ground. The blades are always on the move to prevent sedimentation but the crop only grows in the daytime where sunlight hits the surface of the tank.

Open pond technologies present many problematic aspects that limit their productivity. For example, the thickness cannot be less than 0.15 m (which would allow the volumes involved to be lowered) because otherwise there would be no more good mixing and it cannot exceed 30 cm otherwise there would be problems with the penetration of the sun's rays with a relative decrease in the efficiency [Richmond, 2004].

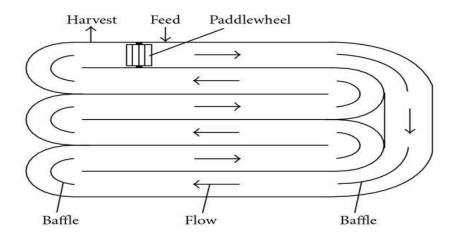



Fig.3 Plan view of a raceway pond (Chisti, 2007)



The algal concentration is very low and this facilitates contamination as well as increasing the costs of separating biomass from the aqueous mass. In addition, area productivity has a limit of 12-13 g /  $m^2$  per day [Norsker et al., 2011] unless substantial changes are made to the technology, making it lose its main characteristic, that is, economy and ease of operation. Outdoor systems are sensitive to climatic variations and they are very affected by the phenomenon of evaporation, which makes this system inefficient in the use of water resources. Another problem is the great need for cultivation areas and therefore for volumes to be treated which, at the same productivity level, are higher than in a closed system, due to the lower effectiveness in the exploitation of photosynthesis. The  $CO_2$  distribution is also less efficient than a in a photobioreactor.

#### 1.2 Photobioreactors

Photobioreactors allow growing crops avoiding contamination and are of different types, tubular reactors, bubble reactors, horizontal, vertical and flat-plate. The tubular reactors consist of a series of transparent, glass or plastic tubes, inside which the culture is made to flow. The pipes must be exposed to the light source, which can be artificial or solar. The diameter of the pipes is limited because the algae must not be allowed to remain in the shade otherwise they would not receive enough energy to grow. For this reason, pipes with diameters greater than 0.10 m are rarely built [Chisti, 2007]. The culture is recirculated from the inside of the tubes to a degassing column where the fresh medium is fed. Fig. 4 shows a typical scheme of a tubular photobioreactor. The movement of the aqueous mass can take place by pumping or by blowing air. This method involves less mechanical stress applied to the cells and therefore less chance of damaging them. It allows a better exchange between the CO<sub>2</sub>-rich gas phase and the liquid phase [Xu et al., 2009]. The arrangement of the pipes must be such as to maximize the light irradiation, therefore the pipes are arranged in a north-south direction and often the surface that support the pipes is made white (by a coating for example) to reflect the light and to increase the exposure of the crop. Many tubular reactors are built in a helical shape, around a cylindrical structure.

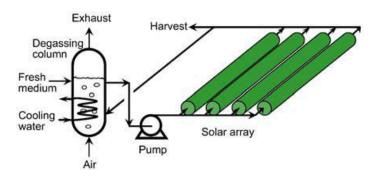



Fig.4 Typical scheme of a tubular photobioreactor with relative degassing column

#### 1.3 Kinematic model

### 1.3.1 Growth kinetics of microalgae

The present study was conducted assuming the cultivation of an algal species called Chlorella. The most important parameter is the one that describes the average light intensity inside a reactor, from which the average irradiation available for a single cell inside the culture is calculated [Molina Grima et al. 1995, 1999]. Since the penetration of



light is highly limited due to the high cell density, only the average irradiance (rather than the irradiance falling on the illuminated culture area) provides a meaningful value of the crop response to the light irradiation.

### 1.3.2 Growth rate of microalgae

The maximum growth rate is the one that is reached in the exponential phase (fig. 4), where there is no limitation due to the substrate.

The specific growth rate  $\mu$  [h<sup>-1</sup>] is defined as the increase in cell mass for unit of time for unit of cell mass [Sandnes et al., 2005]

$$\frac{dN}{dt} = \mu \cdot N \tag{1}$$

Where, N is the number of cells, t is the time and  $\mu$  is the growth rate.

By integrating the equation (1) between the initial conditions (i) and the final conditions (f), it is obtained:

$$\ln \frac{N_f}{N_i} = \mu * (t_f - t_i)$$
 (2)

In an equivalent shape:

$$\mu = \frac{\ln \frac{N_f}{N_i}}{t_f - t_i} \qquad [h^{-1}] \tag{3}$$

Fig.5 shows the semi-logarithmic graph of the cellular concentration of algae and the linear interpolation of the points representative the exponential phase.

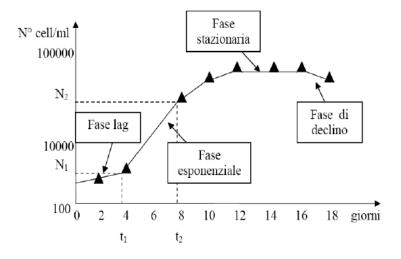
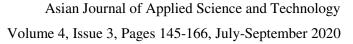




Fig.5 Schematic representation of the growth curve of microalgae

For the calculation of the growth rate, the points relating to the exponential phase are taken into consideration, and from the equation (2):

$$\ln \frac{N}{N_0} = \mu * (t - t_0)$$

It is defined that the growth rate is the slope of the straight line of linear interpolation of the chosen points.





The growth of microalgae in a reactor in which the nutrients are present in sufficient quantities and the climatic conditions are adequate presents a characteristic trend represented in fig. 4.

The curve of the growth of microalgae highlights four phases:

- 1. Latency phase (lag): adaptation of microalgae to the culture medium (synthesis of proteins, ATP, enzymes); the growth rate is zero.
- 2. Exponential phase: microorganisms grow at maximum speed; the number of microalgae doubles at regular time intervals. The growth rate is constant and depends on the availability of nutrients, temperature and light.
- 3. Stationary phase: the scarcity of nutrients and the accumulation of toxic metabolites slow down the growth to zero; the growth rate is zero and the number of organisms constant.
- 4. Decline phase: the number of viable cells decreases as both the division and the metabolic phase are suspended. It generally occurs following an excessive algal concentration, the depletion of nutrients in the culture medium and the establishment of adverse growth conditions (unsuitable temperatures, the presence of toxic substances, inadequate lighting).

The growth of microalgae depends on several variables:

- abiotic factors: light (intensity and wavelength), temperature, concentration of nutrients, oxygen, carbon dioxide, pH, salinity and toxic substances;
- biotic factors: pathogens (bacteria, fungi, viruses) and other competing algae;
- operating variables: mixing, ratio between volumetric flow rate and reactor volume (dilution rate), depth of the reactor with respect to the surface on which the light engrave, harvest frequency.

### 1.4 Molina Grima kinematic model

It starts from the definition of medium intensity  $I_{av}$  as the volumetric average of the punctual intensities found within a photobioreactor by virtue of the distribution of light [Richmond, 2004]

$$I_{av} = \frac{1}{V} \int_{V} I \, dV \tag{4}$$

The individual microalgae continuously move between areas of different light intensity and each cell undergoes an instantaneous change in exposure levels.

In a perfectly stirred reactor, the growth rate  $\mu$  [h<sup>-1</sup>] can be expressed as a function of  $I_{av}$  [Molina Grima et al., 1994]:

$$\mu = \mu_{max} \frac{I_{av}^{q}}{I_{v}^{q} + I_{av}^{q}}$$
 (5)

Where,  $\mu_{max}$  is the maximum growth rate [h<sup>-1</sup>] and  $I_k$  [ $\mu Em^{-2}$  s<sup>-1</sup>] is a specific irradiance constant that represents the  $I_{av}$  able to give a growth rate equal to half of the maximum one.

The model has a significant advantage over the numerous other models of this type published in the literature: that of taking into account the fundamental phenomena of photoinhibition and photolimitation. In fact, it is assumed



that photoinhibition takes place only at very high luminous intensities, which are found in limited volumes of the reactor and close to the irradiated surface.

To take into account the phenomenon, the parameter q of the equation (5) is expressed as a function of the greater light intensity that can be manifested in the ballast, i.e. that at the surface  $I_{z=0}$ ; in the remaining areas of the reactor, even in those subject to photolimitation, it is assumed that the regeneration of the damaged cells takes place [Molina Grima et al., 1999].

$$\mu = \mu_{max} \frac{I_{av}^{\left(b + \frac{c}{I_{z=0}}\right)}}{\left[I_{k}\left(1 + \left(\frac{I_{z=0}}{K_{i}}\right)^{a}\right)\right]^{\left(b + \frac{c}{I_{z=0}}\right)} + I_{av}^{\left(b + \frac{c}{I_{z=0}}\right)}}$$
(6)

The value of the light absorption coefficient must also be estimated, starting from the value of the light intensity; since the radiation intensity decreases exponentially throughout the optical path and the radiation intensity on the edge of the illuminated side of the reactor is denoted with  $I_0$ , then the intensity at a distance x from the illuminated side of the flat reactor is given by [Richmond, 2004]:

$$I(x) = I_0 e^{-k_{\lambda} \cdot x} (law of Lambert-Beer)$$
 (7)

Where,  $k_{\lambda}$  is the attenuation coefficient (which is a typical constant of the medium crossed and depends on the wavelength  $\lambda$ ) and x is the thickness of the crossed solutions (if x is in cm, then  $k_{\lambda}$  will be in cm<sup>-1</sup>). The average radiation is given by an average value of I (x) over the entire optical path ( $0 \le x \le L$ ):

$$I_{av} = \frac{1}{L} \int_0^L I(x) dx = \frac{I_0}{L} \int_0^L e^{-k_{\lambda} \cdot x} dx = I_0 \frac{1 - e^{-k_{\lambda} L}}{k_{\lambda} L}$$
 (8)

To get an idea of how the average radiation intensity varies with the density of the crop, linear approximation is used. So the expression for medium intensity becomes:

$$I_{av} = I_0 \frac{1 - e^{-\alpha \rho L}}{\alpha \rho L} \tag{9}$$

#### 2. Materials and Methods

### 2.1 PBRC (Photobioreactor Continuous) description

The photobioreactor, called PBRC, consists of a tank of a thickness suitable for the pressure exerted inside. The volume of the tank, thermally insulated towards the outside, is divided transversely into two macro-sectors of different length. In the volume with greater length the cultivation of microalgae will take place, while in the volume of shorter length the gravimetric separation of the biomass will take place, through a sonotrode which has the function to emit ultrasound that break the cellular structure of microalgae.

Only in the culture sector, there is a heating from below through radiant panels. The culture sector consists of several panels, suitably arranged to create a sinuous path. These panels are made of plastic sheets with side-emitting optical fiber cables inside [Lavanga, Farné SDNA, 2014], with the aim of allowing a homogeneous light diffusion.

Fig. 6 represents the PBRC tank for the growth of microalgae.



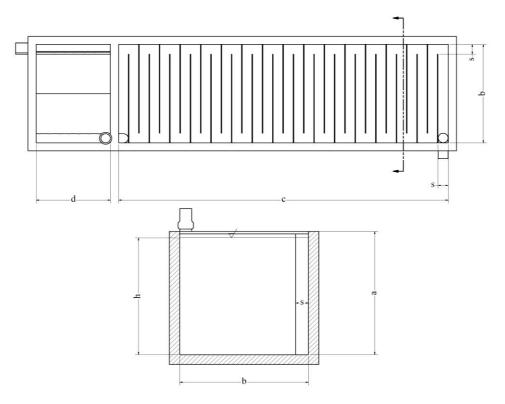



Fig.6 Elevation and section of the PBRC tank

A. The overall length of the sinuous path imposed by the baffles will allow, through a defined speed, to give, in the last stretch, the optimal concentration and therefore ready for extraction

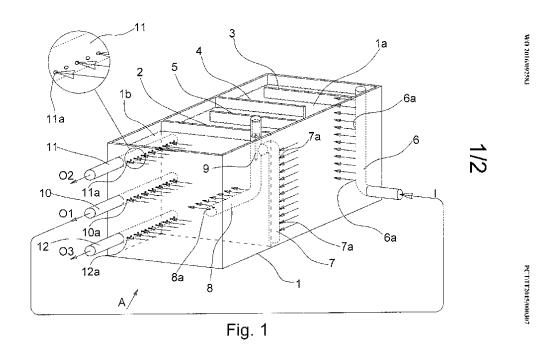



Fig.7/1 Device according to the invention



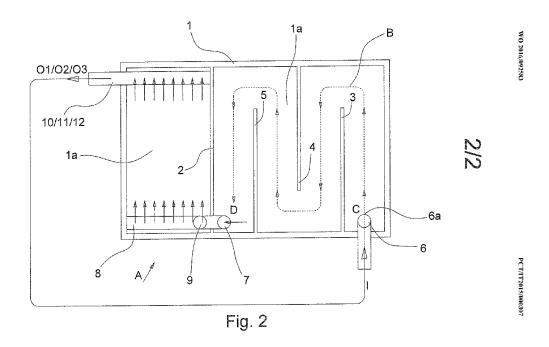
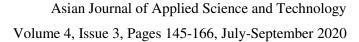




Fig.7/2 Plan view of the device according to the invention, illustrating the path of the fluid mixture in treatment

With reference to figures 7/1 and 7/2, with (A) it is indicated a device according to the invention, fitted to cultivate microalgae and to separate the oleic and protein components. Said device (A) comprises a basin (1), predisposed for the phases of culture and extraction in the condition of communicating vessels, inside which it is positioned a first baffle (2) which divides the basin (1) in a first part (1a) and in a second part (1b).

Inside the first part (1a) of the basin (1) it is present a plurality of alternate baffles (3, 4, 5) fitted to delimit a sinuous path (B) from a point (C) to a point (D). The alternate baffles (3, 4, 5) being homogeneous diffuser panels of a radiation spectrum suitable to the cultivation phase. In order to be able to properly irradiate the mixture, the thickness of said flow is preferably not higher than  $20 \div 30$  cm. Furthermore, along the path (B) are present means to provide the fluid mixture with NPK salts (nitrogen, phosphorus and potassium) and C02. The tank (1) is preferably insulated outside and heated from below, for example by radiant systems to the floor (not shown) for supporting a slight excitation through convective motions so as to create the ideal conditions for the culture. The flow of the mixture, watery based, containing the inoculum, including a small amount of microalgae to be cultured, indicated with the arrow (I), is introduced in the first part (1a) of the basin (1) through a first inlet pipe (6), vertically positioned in coincidence of the point (C) of the beginning of the path (B).

The mixture comes out the tube (6) through a plurality of holes (6a) aligned along a generatrix of said first inlet tube (6). The watery mixture, after the path (B), reaches the point (D) and runs into a second tube (7), through a plurality of holes (7a) aligned along a generatrix of the second tube (7). In order to obtain a more regular flow, the inlet of the watery mixture takes place in the bottom part of the first inlet tube (6), while the output of the mixture takes place at the top of the second tube (7), according to a scheme of reverse return. From the second pipe (7), the watery mixture passes into a third tube (8) and, from this, passes in the second part (1b) of the tub (1). The passage from the third





tube (8) to the second part (1b) of the tub (1) takes place through a plurality of holes (8a) aligned along a generatrix of the third tube (8). The part of the third tube (8) in which it is present the plurality of holes (8a) is arranged horizontally and is positioned at about half the height of the basin (1). In the top vertical position of the third tube (8), preferably in coincidence of the zone in which the second pipe (7) enters in the third tube (8), it is positioned a sonotrode probe (9), the function of which will be described hereinafter. The mixture leaving the third tube (8) passes through the second part (1b) of the basin (1) and reaches, on the opposite side, three outlet tubes, intermediate (10), upper (11) and lower (12) parallelly arranged to the third tube (8). The three outlet tubes (10), (11) and (12) are provided with holes (10a), (11a) and (12a) respectively, aligned along a generatrix. In the enlarged detail of the upper tube (11) the holes (11a) are shown; the enlarged detail is representative of the holes made on all tubes inside the basin (1). In the path from the third tube (8) to the three outlet tubes (11), (12) and (13), the mixture is subjected to the separation of the fractions oleic, that goes upwards, and protein, that goes downwards, leaving at half height a fraction composed almost exclusively of water. Proceeding towards the outlet tubes, the watery fraction is directed mainly towards the central tube (10), from which it comes out, as indicated by the arrow (O1). Similarly the oleic fraction, lighter, goes upwards and comes out from the upper tube (11), forming a flow (O2), while the protein fraction, heavier, goes downwards and comes out from the lower tube (12), forming a flow (03). The intermediate flow (01) containing the inoculum, enriched by water, is recycled through said first inlet tube (6) for a new treatment. The operation of the device (A), that is also the method of treatment according to the invention, is the following:

- the watery mixture containing the inoculum, substantially constituted by a small amount of microalgae, is introduced in the first part (1a) of the basin (1) through the first inlet tube (6);
- the mixture follows the path (B), from the inlet point (C) to the outlet point (D) along which it is irradiated by a radiation spectrum suitable to the development and the growth of the microalgae;
- along the path (B) they are added the NPK salts (containing nitrogen, phosphorus and potassium) in appropriate titre, and CO2, these additions, together with the diffusion of an appropriate radiation spectrum, causes an intense growth of algae, said growth being able to reach a hourly rate of growth between 10% and 20%;
- arrived in the fourth tube (8), the mixture is flooded by the ultrasounds emitted by the sonotrode probe (9) that destroys the algae splitting them in oleic and protein components, said division being suitably measured out through the adjustment of the power of the sonotrode, to preserve a small amount of algae;
- the resulting mixture, composed i.e. by a oleic fraction, a protein fraction and a small amount of not damaged algae, runs into the second part (1b) of the basin (1), where it undergoes a gravimetric separation;
- the oleic fraction, lighter, collects in the upper outlet tube (11) and form the output flow (02), while the protein fraction, heavier, collects in the lower outlet tube (12) and form the output flow (03); the neutral fraction, largely composed of water containing a small amount of not damaged algae, is recycled to the inlet tube (6) for a new cycle of culture. The process (depending on the unicellular strain and of its chemical-biological structure) can be supported by flocculating or chemical agents to facilitate the separation and its collection (functional as well as to



any subsequent treatments). The oleic (high) and the protein (low) components are extracted according to rates of flow correlated to the concentration of the relevant "solute" (detected by suitable densitometers), and the volumes of water must be properly replenished.

#### 3. Results and Discussion

#### 3.1 Growth rate calculation

Starting from an initial concentration of Chlorella microalgae of 1.34 [g / l] (starting inoculum  $\rho_i$ ) a final biomass density of 21.44 [g / l] is obtained.

Taking into consideration the microalgal species Chlorella, at a temperature of 35-37 [°C] and at a pH between 6 and 7.5, having a doubling of density every 6 hours, there is a maximum specific growth rate (3):  $\mu = 0.116 \, [h^{-1}]$ .

The doubling of the density every 6 hours is considered in order to always maintain a constant and contained growth rate in the maximum of the microalga taken into consideration (from the literature the limit value for Chlorella is 0.13 [h<sup>-1</sup>]).

Table 1: Density of algal biomass

| Data                              | u.m.                  | value  | value | u.m.              | note                                          |
|-----------------------------------|-----------------------|--------|-------|-------------------|-----------------------------------------------|
| density of the chlorella inoculum | pi(kg/m³)             | 1,340  |       |                   |                                               |
| doubling density                  | p(kg/m <sup>3</sup> ) | 2,68   |       |                   |                                               |
| density of the final biomass      | pf(kg/m³)             | 21,440 |       |                   |                                               |
| growth rate                       | h <sup>-1</sup>       | 0,116  | 0,693 | day <sup>-1</sup> | $\mu = \frac{\ln \frac{N_f}{N_i}}{t_f - t_i}$ |
| initial time                      | h <sup>-1</sup>       | 0,000  |       |                   |                                               |
| final time                        | h <sup>-1</sup>       | 6,000  |       |                   | Double of the density every 6 hours           |

In table 2, the density values are reported, considering the doubling of the same every 6 hours.

Table 2: Density of algal biomass every 6h

| data          | u.m.  | value |
|---------------|-------|-------|
| density t=0h  | kg/m3 | 1,340 |
| density t= 6h | kg/m3 | 2,680 |



| density t=12h | kg/m3 | 5,360  |
|---------------|-------|--------|
| density t=18h | kg/m3 | 10,720 |
| density t=24h | kg/m3 | 21,440 |

### 3.2 Parameters that influence growth

### 3.2.1 Light

Not all light is used for the process but only that corresponding to the portion of the electromagnetic spectrum with wavelengths between 400 nm and 700 nm. The radiation belonging to this range is called "photosynthetically active" and is indicated by the term PAR. The greater the amount of light that microalgae receive, the greater their growth rate and therefore the ability to perform photosynthesis. This does not always apply, every species of microalgae has a maximum acceptable irradiance, beyond which photoinhibition phenomena are observed.

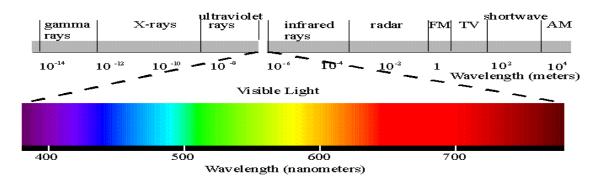
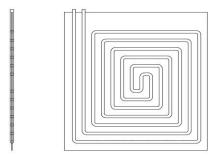



Fig.8 Electromagnetic spectrum in which the portion corresponding to visible light is highlighted


The PBRC tank is equipped with alternating dividing partitions that create a sinuous path inside the tank in which the microalgal solution moves; mounted on these partitions there are transparent panels incorporating an optical fiber which has the fundamental task of acting as a light source to carry out photosynthesis and to homogenise the radiation spectrum. These coplanar diffusers (SDNA) are arranged between them at a distance of between 0.25 and 0.30 [m] and, since they illuminate from both directions, there is an attenuation of the light in a length of only 0.12 - 0.15 [m] (significantly related to the powers exercised and to the crop density).

Each of these panels essentially consists of two sheets of transparent plastic material (polyethylene or the like), inside which a side glow (side emitting) optical fiber is contained under vacuum. The two sheets are welded together at the edges and in intermediate sections, and fixed inside the tank with appropriate guides.

The system described is the subject of an Italian patent [Lavanga and Farné, 2014], called SDNA (lights diffusor homogenous by side emission fiber). The light intensity, which enters from one end of the cable, will disperse laterally, then gradually decrease as it proceeds towards the exit end.

To ensure a homogeneous light diffusion over the entire surface, the cable is arranged, as can be seen in Figure 9, so that each infinitesimal length of the cable is flanked by the corresponding section with an opposite intensity, so that the sum is substantially the same.





**Fig.9** Fiber optic cable with lateral emission inserted between two polyethylene sheets arranged so as to guarantee homogeneous lighting

Each panel has its own illuminator system dedicated and piloted by PLC (Programmable Logic Controller), to dose frequency and intensity (power) in the progress of the series of panels, according to the programmed microalgal growth rates (the system can also use the CMTC system described in the following paragraph, by redirecting only the red / blue components of direct solar origin, the rest flows into thermal inputs, the whole is assisted by LEDs, by means of a PLC, for the phases of darkening the daytime weather and fully in the nighttime ones).

The advantages of using this technology are significant:

- the optical fiber gives off cold light as there is no heat transfer. This avoids the use of cooling systems, as occurs in closed photobioreactors that use sunlight [Mata et al., 2010]
- the optical fiber does not carry electricity
- the optical fiber gives off UV and infrared free light. This allows to give microalgae only the portion of the electromagnetic spectrum necessary for photosynthesis (PAR).
- it is possible to select the electromagnetic spectrum, in order to use a smaller part of the PAR, the one that favors the photosynthetic processes in microalgae, that is the wavelengths that correspond to the red and blue / violet colors [Choi et al., 2015].
- it is possible to subject the culture to intermittent light / dark with variable frequencies, in order to characterize the final product of the plant, since, at different light frequencies, the microalgal cells are stressed and induced to change their composition [Choi et al., 2015].
- independence from weather conditions and day / night and seasonal cycles
- possibility of conferring, at each stage of development of the microalgal culture, the light intensity necessary to maximize the specific growth rate  $\mu$ , avoiding the phenomenon of photoinhibition [Chisti, 2007].

### 3.2.2 Temperature

Temperature plays an important role for microalgal growth, microalgae can grow in mixtures at 10-35 °C but the optimal value is 20 °C (Chinnasamy et al. 2010). By carrying out studies on outdoor installations, temperature and lighting are related to each other and depend on the climatic conditions of the place where the cultivation is located. Temperatures below 16 °C can inhibit microalgal growth, while for most species temperatures above 35°C are



lethal. Considering microalgal crops in temperate areas, it is important to take into account the cooling of the reactor, achievable for example by spraying water on the external surface, with corresponding additional costs (Morweiser et al. 2010). In the PBRC, the temperature of the culture will be maintained at optimal values between 28-32 °C; to guarantee the temperature value constantly, a system of radiant panels will be installed below the culture macrovolume. Through the thermal conductivity of the fluid, the heat will propagate throughout the microalgal culture. In the separation macrovolume sedimentation must be favored, therefore there will be no heating.

### 3.2.3 pH and dissolved oxygen

pH values in the mixture in which microalgae are grown can vary from 4 to 12, but neutrality seems to be the best value for many species of microalgae (Chinnasamy et al. 2010). Even the dissolved oxygen present in the mixture can affect growth, concentration values greater than 4 times the oxygen saturation concentration can create inhibition (Chisti 2007) or limit the photosynthesis rate (Pawlowski et al. 2015). The pH defined for the PBRC system varies between 8-11

#### 3.2.4 Nutrients

The doses of nutrients (carbon dioxide, nitrogen, phosphorus, potassium) necessary for the growth of microalgae must be determined in a stoichiometric way with respect to their composition. For the related calculations, see the next paragraph.

### **3.2.5** *Mixing*

In large scale plants for the production of microalgae, mixing is essential to continuously expose cells to photons, which would otherwise be in shadow areas, and to avoid algae sedimentation [Amicarelli et al., 2012]. Since there are no shaded areas in the PBRC, minimal mixing will be required. This will be ensured through the insufflation of CO<sub>2</sub> from below and thanks to the mass transport due to the thermal gradient due to underfloor heating: first the heat passes by conduction from the surface to the adjacent fluid particles, so that the energy thus transmitted increases the internal energy and the temperature of the particles, these particles then move towards a region of the fluid at a lower temperature and mix with it, transferring part of their energy to other particles. Further input to mixing comes from the slow progress (in the regime of "communicating vessels"), balanced and moderate as befits the ongoing processes, as well as from the insufflation of NPK nutrients, such as liquid fertilizers, through injectors diffused along the entire orthogonal section to the existing laminar flow, at each inlet agitated.

### 3.2.6 Nutrient modeling

## Calculation of the inoculum speeds inside the pipe

With reference to the Chlorella inoculation, it is assumed to use a 2" tubing that allows to calculate the inoculum velocity in the PBRC adduction tubing

$$v_{inoculo} = \frac{v_{sinuoso} * A_{percorso \, sinuoso}}{A_2} = \frac{3,33 \, \frac{m}{H} * 0,6 \, m^2}{0,001962 \, m^2} = 1019,36 \, \frac{m}{H} * \frac{1H}{3600s} = 0,283 \, \frac{m}{s}$$



**Table 3:** Inoculation speed

| data                                             | u.m.     | value    | u.m.        | value | note             |
|--------------------------------------------------|----------|----------|-------------|-------|------------------|
| Inoculation speed                                | v2 (m/h) | 1019,36  | v2<br>(m/s) | 0,283 |                  |
| Internal tube diameter for inoculum inlet        | d2(m)    | 0,053    |             |       | 2 " pipe defined |
| Internal area of 2" tube for inoculation passage | A2"(m2)  | 0,001962 |             |       |                  |

### Calculation of the inoculum speed leaving the diffusers

With a ½ "diffuser diameter, the inoculum speed at the diffuser outlet will be equal to:

$$v_{inoculo} = \frac{Q_0}{A_{diffusore}} = \frac{2 \frac{m^3}{H}}{0,000230 m^2} = 8695 \frac{m}{H} * \frac{1h}{3600s} = 2,41 \frac{m}{s}$$

The inoculum mass flow rate into the tank is calculated:

$$m_{inoculo} = p_{inoculo} * Q_0 = 1,34 \frac{Kg}{m^3} * 2 \frac{m^3}{h} = 2,68 \frac{Kg}{h}$$

$$Q_{volumetrica} = v_{inoculo} * A_2 = 0.283 \frac{m}{s} * 0.001962 m^2 = 0.000555 \frac{m^3}{s}$$

Table 4: Inoculum injection diffuser characteristics

| data                                   | Unit measure                      | value    | u.m. | value   | note  |
|----------------------------------------|-----------------------------------|----------|------|---------|-------|
| internal diameter 1/2                  | D. speakers                       | 17.120   |      | 0.01710 |       |
| "injection inoculation diffusers       | (mm)                              | 17,120   | m    | 0,01712 |       |
| 1/2 "speaker area                      | A. diffuser (m <sup>2</sup> )     | 0,000230 |      |         |       |
| inoculation speed in the 1/2 "diffuser | v. diffuser inoculum (m/h)        | 8695     | m/s  | 2,41    |       |
| inlet mass flow rate                   | m. inoculum  Kg/h                 | 2,68     |      |         |       |
| Inoculum volume flow rate at the inlet | Volumetric Q<br>m <sup>3</sup> /s | 0,000555 | 1/s  | 0,555   | Q=v*A |



### Calculation of the mass flow of CO<sub>2</sub>

The dose of carbon dioxide necessary for the growth of microalgae is determined as follows:

$$m_{co_2} = w_c * f_m * \frac{PM_{CO_2}}{PM_C} = 0.012 \; \frac{kg}{s} * 0.521 * \frac{44}{12} = 0.023 \; \frac{kg_{co_2}}{s} * 3600 \; \frac{s}{h} = 82.80 \; \frac{kg_{co_2}}{h} = 82.80 \; \frac{kg_{co_2}}$$

**Table 5:** Flow rate values CO2

| massive carbon fraction in microalgae | $f_m = (adim)$      | 0,521 |
|---------------------------------------|---------------------|-------|
| CO2 molecular weight                  | g/moli              | 44    |
| Molecular weight C                    | g/moli              | 12    |
| annual biomass production             | $w_c = \text{kg/s}$ | 0,012 |

| massive carbon fraction in microalgae | mco2 = kgco2/s | 0,023 |
|---------------------------------------|----------------|-------|
| CO2 molecular weight                  | mco2 = kgco2/h | 82,80 |

**Table 6:** CO<sub>2</sub> density value (from the engineer manual)

| Density CO <sub>2</sub> | p=(Kg/m3) | 1,840 |
|-------------------------|-----------|-------|
|                         |           |       |

For each ton of biomass produced it takes about 1,83 t of CO<sub>2</sub> (Chisti, 2007)

### Calculation of the volumetric flow rate of CO2

The calculation of the volume flow is thus defined:

$$Q_{co_2} = \frac{m_{CO_2}}{\rho_{CO_2}} = \frac{0,023 \frac{kg}{s}}{1,84 \frac{kg}{m^3}} = 0,0125 \frac{m^3}{s}$$

**Table 7:** CO<sub>2</sub> Volume flow value

| Volume flow CO2 | QCO2 = m3/s | 0,0125 |
|-----------------|-------------|--------|
|                 |             |        |

### Injection piping analysis CO2

Data:

 Table 8: Dimensional characteristics of the injection tube CO2

| Inner tube diameter 1 " | dco2(mm)   | 0,028    |
|-------------------------|------------|----------|
| Pipe area 1 "           | A co2 (m2) | 0,000609 |



### Calculation of the CO<sub>2</sub> speed

Using the following formula, the CO<sub>2</sub> rate is determined

Table 9: CO<sub>2</sub> speed value

| data                  | u.m.       | result | u.m. | result  |
|-----------------------|------------|--------|------|---------|
| CO <sub>2</sub> speed | vco2 (m/h) | 20,52  | m/s  | 0,00563 |

### Nutrient analysis: Nitrogen, Phosphorus, Potassium

Table 10 summarizes the quantities of the main nutrients that must be supplied to the Chlorella microalgae.

**Table 10:** N,P,K values

| data              | u.m. | result | u.m.                             |
|-------------------|------|--------|----------------------------------|
| N nitrogen flow   | Kg/h | 2,237  | 30% * mass flow to be integrated |
| P phosphorus flow | Kg/h | 1,491  | 20% * mass flow to be integrated |
| K potassium flow  | Kg/h | 0,746  | 10% * mass flow to be integrated |

### Calculation of the amount of water to be supplied to the system

The mass flow rate of water to be supplied to the system is calculated as follows:

$$m_{H_2O} = 0.5 * w^{in}_{H} * m_{giornaliera\;biom} * \frac{PM_{H_2O}}{PM_{H}} = 0.5 * 0.080 * \frac{18}{1} \frac{g/moli}{g/moli} * 1029 \frac{kg_{H2O}}{d} = 740.88 \frac{kg_{H2O}}{d} = 740.88$$

$$m_{H_2O} = \frac{740,88 \frac{kg_{H2O}}{d}}{24 \frac{h}{d}} = 30,87 \frac{kg_{H2O}}{h}$$

Table 11: H<sub>2</sub>O values to be supplied to the system

| data                                                 | u.m.                           | values |      |       | note                                                                           |
|------------------------------------------------------|--------------------------------|--------|------|-------|--------------------------------------------------------------------------------|
| PM H2O                                               | g/moli                         | 18     |      |       |                                                                                |
| PM hydrogen                                          | g/moli                         | 1      |      |       |                                                                                |
| mass flow rate of water to be supplied to the system | mH <sub>2</sub> O=(Kg/d<br>ay) | 740,88 | kg/h | 30,87 | $m_{H_2O} = 0.5 * w^{in}_H * m_{giornaliera\ biom}$ $* \frac{PM_{H_2O}}{PM_H}$ |
| Massive fraction of hydrogen                         | whiN (adim)                    | 0,080  |      |       |                                                                                |



### 3.3 Collection Systems

### 3.3.1 Ultrasound cell breaking

The cell destruction mechanism results from intensive cutting induced by sonication of the suspension at sound frequencies above 20 kHz. A magnetostrictive or piezoelectric transducer converts the alternating current of a electric oscillator in mechanical waves that are transmitted to the suspension through a metal probe (usually titanium) vibrating with the same frequency as the oscillator. Sound waves create many micro bubbles in various suspended nucleation sites, which implode during the period of rarefaction of sound waves. This cavitation phenomenon (formation, growth, and collapse of vapor-filled bubbles) produces intense local shock waves, and intense local shear gradients are generated that cause cells to deform beyond the elasticity and rupture limits [Richmond, 2004]. Ultrasound is usually used as a method of cell destruction for the extraction of proteins from microalgae, since temperature and stresses modify the structure of these compounds [Bermejo et al., 2001]. Mechanical cell disintegration is generally preferred as it avoids further chemical contamination of algal preparation while preserving most of the material's functionality within the cell [Chisti & Moo-Young, 1986].



Fig.10 Example of a powerful ultrasound processor

### 3.3.2 Sedimentation and suspension of microalgae

Following the breakdown of the microalgae, the flow is introduced, into the collection macrovolume, horizontally through a perforated tube placed at a level equal to half that of the free surface, as shown in fig. 11. The already destroyed microalgal cells will proceed very slowly towards the opposite wall. During this process, the particles with a higher specific gravity will sediment downwards due to the effect of gravity. On the contrary, the lighter cells will tend to rise towards the free surface.

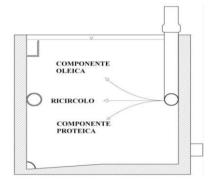



Fig.11 Sectional view of the collection volume



Success in removing solids by gravity settling depends heavily on the density of the microalgae particles. Edzwald (1993) found that low density microalgae particles do not settle well and are not successfully separated. To favor this process, flocculation, already often used to increase the efficiency of sedimentation by gravity, can be used. It is a process in which the dispersed particles are aggregated together to form larger particles for sedimentation. [Chen et al., 2011]. There are various types of flocculation: self-flocculation, chemical coagulation, with inorganic coagulants, with organic flocculants, combined flocculation and with electrolytic process. Instead, to favor the suspension of lighter cells (oleic component of microalgae), flotation can be used. Flotation is a gravity separation process in which air or gas bubbles they stick to solid particles and then bring them to the liquid surface. Chen et al. (1998) noted that flotation is more beneficial and effective than sedimentation with regard to the removal of microalgae. Flotation can capture particles with a diameter of less than 500 µm through the collision between a bubble and a particle and the subsequent adhesion of the bubble and the particle [Yoon & Luttrell, 1989]. Based on the size of the bubbles used in the flotation process, the applications can be divided into dissolved air flotation (DAF), dispersed air flotation and electrolytic flotation.

Studies are underway for a separation of the microalgal biomass by electroplating with spiral electrodes in iron and aluminum. Electroflotation can be considered an effective technique for the separation of microalgal biomass, but additional work is needed to explore ways to avoid increasing levels of toxic metals in the discarded effluent [Baierle et al., 2015].

A significant alternative derives from the joint use of electro-floatation and pushed gravimetric separation, by means of the system GSMF inserted between input and outputs (two distinct blocks of honeycomb). GSMF (gravimetric separator mixtures fluid, liquid and gas) is an Italian patent [Lavanga and Farné, 2014]

### 3.3.3 Calculation of oleic, protein content, recirculation

It has been assumed to distribute the biomass with the following percentages

% protein content = 64%

% oleic content = 34%

% recirculation content = 2%

Using the formula below, it was possible to determine the masses of the protein, oleic and recirculating contents

Mass protein content =% protein content \* Hourly biomass production

Protein content mass =% oleic content \* Hourly biomass production

Mass content to be recirculated =% content recirculated \* Hourly production of biomass

**Table 12:** Nutrients to be supplied to the system

| data              | u.m. | values |
|-------------------|------|--------|
| % protein content | %    | 0,640  |



| % oleic content            | %                              | 0,340  |
|----------------------------|--------------------------------|--------|
| % recirculation content    | %                              | 0,020  |
| mass protein content       | $m_{proteico} = = \text{Kg/h}$ | 27,443 |
| mass oleic content         | $m_{oleico} = \text{Kg/h}$     | 14,579 |
| recirculation content mass | $m_{ricircolo} = \text{Kg/h}$  | 0,858  |

### 3.4 Calculation of flow rates

### 3.4.1 Extracted from the system

The extracted flow rate consists of the sum of the mass of the protein and oleic content

$$m_{estratta} = m_{oleico} + m_{proteico} = 27,443 + 14,579 = 42,022 \frac{Kg}{h}$$

Table 13: Flow rate extracted from the system

| data           | u.m. | values |
|----------------|------|--------|
| $m_{estratta}$ | Kg/h | 42,022 |

### 3.4.2 To be integrated into the system

The flow rate to be integrated into the system is calculated:

$$m_{integrare} = m_{estratta} - (m_{ricircolo} + m_{H2O} + m_{inoculo}) = 42,022 \frac{Kg}{h} - (0,858 + 30,87 + 2,68)$$
  
= 7,457  $\frac{Kg}{h}$ 

Table 14: Mass flow rate to be integrated into the system

| data            | u.m. | result |
|-----------------|------|--------|
| $m_{integrare}$ | Kg/h | 7,457  |

The flow rate to be integrated takes place in percentage by means of the nutrients N, P, K in the following quantities:

$$m_{N \, da \, integrare} = 30\% * m_{integrare} = 2,237 \frac{kg}{h}$$

$$m_{P \ da \ integrare} = 20\% * m_{integrare} = 1,491 \frac{kg}{h}$$

$$m_{K \, da \, integrare} = 10\% * m_{integrare} = 0.746 \frac{kg}{h}$$



| Table  | 15. | Nutrients | to be | integrated | into | the system  |
|--------|-----|-----------|-------|------------|------|-------------|
| 1 anie | 13. | Numberns  | io be | micgraicu  | ши   | HIC SYSTEIN |

| u.m. data                   | u.m. data                      | result | u.m.                             |
|-----------------------------|--------------------------------|--------|----------------------------------|
| Nitrogen mass flow rate N   | Nitrogen mass flow rate N      | 2,237  | 30% * mass flow to be integrated |
| Phosphorus mass flow rate P | Phosphorus mass<br>flow rate P | 1,491  | 20% * mass flow to be integrated |
| Potassium mass flow rate K  | Potassium mass flow rate K     | 0,746  | 10% * mass flow to be integrated |

### 3.4.3 Collection of separate parts of microalgae

Following the separation through the collection volume, the three micro-algae products will be taken on the wall opposite the entrance:

- the protein component with a perforated tube, located on the bottom of the tank; the floor is inclined to allow a more effective collection.
- the oleic component with a cantilevered step positioned at a millimeter level under the free surface (Fig. 12)
- inoculation with perforated tube placed at an intermediate level.

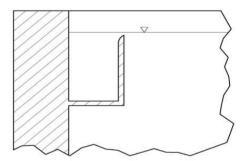



Fig.12 Detail of the step for collecting the oleic component

### 4. Conclusions

The PBRC (Photo Bio Reactor Continuous) presented, is aimed at the production of oleic and protein substances to be used as raw material in the energy sector (production of biofuels), pharmaceutical, agri-food, cosmetic. This device overcomes many of the limitations of the existing systems, and reaches high rates of productivity. PBRC offers a significant contribution to the production of energy from renewable sources and to the problem of limiting CO<sub>2</sub> emissions into the atmosphere, which is used as a nutrient for the growth of microalgae. As it is clear from the foregoing description, in the described device, it is possible to obtain large amounts of oleic and of protein material from small amounts of algae. For a full ecological application of the device, the energy sources, to be used to favour the growth of the algae and their treatment, will be of renewable type.



### Acknowledgments

Dr. Vito Lavanga, freelance researcher and inventor.

### **Bibliography**

- Lavanga V., Farné S., PBRC https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2016092583 (algae to food/feed/biofuel, in urban and periurban).
- Lavanga V., Farné S., SDNA https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2016092576 (lights diffusor homogenous by side emission fiber).
- Lavanga V., Farné S., CMTC https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2016092580 (capture radiative spectrum and thermal energy).
- Lavanga V., Farné S., GSMF https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2016092577 (gravimetric separator mixtures fluid, liquid and gas).
- Mata Teresa M., Martins Antonio A., Caetano Nidia. S.; (2010); Microalgae for biodiesel production and other applications: A review; Renewable and Sustainable Energy Reviews.
- Molina Grima E., Acién Fernández F.G., García Camacho F., Chisti Yusuf; (1999); Photobioreactors: light regime, mass transfer, and scaleup; Journal of Biotechnology.
- Molina Grima E., García Camacho F., Sánchez Pérez J.A., Fernández Sevilla J., Acién Fernández F.G., Contreras Gómez A.; (1994); A mathematical model of microalgal growth in light limited chemostat cultures; J. Chem. Technol. Biotechnol.
- Brennan L., Owende P. (2010) Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews.
- Amicarelli Vera, Paiano Annarita, Lobefaro Leonarda; (2012); Le microalghe nel settore dei biocombustibili. Sviluppo e sostenibilità; Energia, ambiente e innovazione.
- Sandnes J.M., Källqvist T., Wenner D., Gislerød H.R.; (2005); Combined influence of light and temperature on growth rates of Nannochloropsis oceanica: linking cellular responses to large-scale biomass production; J Appl Phycol.
- Richmond A.; (2004); Handbook of microalgal culture: biotechnology and applied phycology; Blackwell Science Ltd., Norma ISPELS VSR 95 Ed.99.
- Choi Yong-Keun, Kumaran Rangarajulu Senthil, Jeon Hyeon Jin, Song Hak-Jin, Yang Yung-Hun, Lee Sang Hyun, Song Kyung-Guen, Kim Kwang Jin, Singh Vijay, Kim Hyung Joo; (2015); LED light stress induced biomass and fatty acid production in microalgal biosystem, Acutodesmus obliquus; Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy.
- Chisti Y. (2007); Biodiesel from microalgae, Biotechnology Advances.
- Chinnasamy, S. et al., 2010. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresource Technology.
- Morweiser, M. et al., 2010. Developments and perspectives of photobioreactors for biofuel production.



# Asian Journal of Applied Science and Technology Volume 4, Issue 3, Pages 145-166, July-September 2020

- Bermejo, R., Talavera, E.M. & Alvarez-Pez J.M.; (2001); Chromatographic purification and characterization of β-phycoerythrin from Porphyridium cruentum. Semipreparative HPLC separation and characterization of its subunits.; J. Chromatogr.
- Chisti, Y., Moo-Young, M., (1986); Disruption of microbial cells for intracellular products. Enzyme Microbiol.
- Edzwald, J.K., (1993); Algae, bubbles, coagulants, and dissolved air flotation. Water Sci. Technol.
- Citrini D., Noseda G.; (1987); Idraulica, seconda edizione, Casa Editrice Ambrosiana.
- Yoon, R.H., Luttrell, G.H.; (1989); The effect of bubble size on fine particle flotation. Miner. Process. Extract. Metal. Rev.: An Int. J. 5.
- Baierle Felipe, John Danielle K., Souza Maiara P., Bjerk Thiago R., Moraes Maria S.A., Hoeltz Michele, Rohlfes Ana L.B., Camargo Maria Emilia, Corbellini Valeriano A., Schneider Rosana C.S.; (2015); Biomass from microalgae separation by electroflotation with iron and aluminum spiral electrodes; Chemical Engineering Journal.